Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Brian Post
- Peter Wang
- Andrzej Nycz
- Blane Fillingim
- Chris Masuo
- Sam Hollifield
- Sudarsanam Babu
- Thomas Feldhausen
- Adam Willoughby
- Ahmed Hassen
- Chad Steed
- J.R. R Matheson
- Joshua Vaughan
- Junghoon Chae
- Lauren Heinrich
- Mingyan Li
- Peeyush Nandwana
- Rishi Pillai
- Travis Humble
- Yousub Lee
- Aaron Werth
- Adam Stevens
- Alex Roschli
- Ali Passian
- Amit Shyam
- Brandon Johnston
- Brian Gibson
- Brian Weber
- Bruce A Pint
- Cameron Adkins
- Charles Hawkins
- Christopher Fancher
- Chris Tyler
- Craig Blue
- David Olvera Trejo
- Emilio Piesciorovsky
- Gary Hahn
- Gordon Robertson
- Harper Jordan
- Isaac Sikkema
- Isha Bhandari
- Jason Jarnagin
- Jay Reynolds
- Jeff Brookins
- Jesse Heineman
- Jiheon Jun
- Joel Asiamah
- Joel Dawson
- John Lindahl
- John Potter
- Joseph Olatt
- Kevin Spakes
- Kunal Mondal
- Liam White
- Lilian V Swann
- Luke Koch
- Luke Meyer
- Mahim Mathur
- Marie Romedenne
- Mark Provo II
- Mary A Adkisson
- Michael Borish
- Nance Ericson
- Oscar Martinez
- Priyanshi Agrawal
- Rangasayee Kannan
- Raymond Borges Hink
- Ritin Mathews
- Rob Root
- Roger G Miller
- Ryan Dehoff
- Samudra Dasgupta
- Sarah Graham
- Scott Smith
- Srikanth Yoginath
- Steven Guzorek
- T Oesch
- Varisara Tansakul
- Vlastimil Kunc
- William Carter
- William Peter
- Yarom Polsky
- Yong Chae Lim
- Yukinori Yamamoto
- Zhili Feng

The ever-changing cellular communication landscape makes it difficult to identify, map, and localize commercial and private cellular base stations (PCBS).

This manufacturing method uses multifunctional materials distributed volumetrically to generate a stiffness-based architecture, where continuous surfaces can be created from flat, rapidly produced geometries.

The lack of real-time insights into how materials evolve during laser powder bed fusion has limited the adoption by inhibiting part qualification. The developed approach provides key data needed to fabricate born qualified parts.

A novel method that prevents detachment of an optical fiber from a metal/alloy tube and allows strain measurement up to higher temperatures, about 800 C has been developed. Standard commercial adhesives typically only survive up to about 400 C.

Test facilities to evaluate materials compatibility in hydrogen are abundant for high pressure and low temperature (<100C).

The QVis Quantum Device Circuit Optimization Module gives users the ability to map a circuit to a specific quantum devices based on the device specifications.

QVis is a visual analytics tool that helps uncover temporal and multivariate variations in noise properties of quantum devices.

A valve solution that prevents cross contamination while allowing for blocking multiple channels at once using only one actuator.

Materials produced via additive manufacturing, or 3D printing, can experience significant residual stress, distortion and cracking, negatively impacting the manufacturing process.

This work seeks to alter the interface condition through thermal history modification, deposition energy density, and interface surface preparation to prevent interface cracking.