Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate (229)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (138)
- User Facilities (28)
Researcher
- Brian Post
- Peter Wang
- Andrzej Nycz
- Rafal Wojda
- Blane Fillingim
- Chris Masuo
- Prasad Kandula
- Sudarsanam Babu
- Thomas Feldhausen
- Ahmed Hassen
- Christopher Fancher
- J.R. R Matheson
- Joshua Vaughan
- Lauren Heinrich
- Peeyush Nandwana
- Vandana Rallabandi
- Yousub Lee
- Adam Stevens
- Alex Plotkowski
- Alex Roschli
- Amit Shyam
- Brian Gibson
- Cameron Adkins
- Chris Tyler
- Craig Blue
- David Olvera Trejo
- Gordon Robertson
- Isha Bhandari
- Jay Reynolds
- Jeff Brookins
- Jesse Heineman
- John Lindahl
- John Potter
- Liam White
- Luke Meyer
- Marcio Magri Kimpara
- Michael Borish
- Mostak Mohammad
- Omer Onar
- Praveen Kumar
- Rangasayee Kannan
- Ritin Mathews
- Roger G Miller
- Ryan Dehoff
- Sarah Graham
- Scott Smith
- Shajjad Chowdhury
- Steven Guzorek
- Subho Mukherjee
- Suman Debnath
- Vlastimil Kunc
- William Carter
- William Peter
- Yukinori Yamamoto

In additive printing that utilizes multiple robotic agents to build, each agent, or “arm”, is currently limited to a prescribed path determined by the user.

This invention discusses the methodology to calibrating a multi-robot system with an arbitrary number of agents to obtain single coordinate frame with high accuracy.

Technologies are described directed to reducing weld additive part distortion with spot compressions integrated into the build process. The disclosed technologies can be used to make weld additive parts with potentially better geometrical accuracy.

Complex protective casings and housings are necessary for many applications, including combustion chambers of gas turbines used in aerospace engines. Manufacturing these components from forging and/or casting as a whole is challenging, costly, and time-consuming.

Additively manufacturing of the windings with a conductor distributed in the cross-section according to the Hilbert curve provides many benefits as it allows for the reduction of the high-frequency losses due to the reduction of the effective winding conductor size.

In wire-arc additive manufacturing and hot-wire laser additive manufacturing, wire is fed into a melt pool and melted through the arc or laser process.

In manufacturing parts for industry using traditional molds and dies, about 70 percent to 80 percent of the time it takes to create a part is a result of a relatively slow cooling process.