Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate (229)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (138)
- User Facilities (28)
Researcher
- Brian Post
- Peter Wang
- Andrzej Nycz
- Blane Fillingim
- Chris Masuo
- Joseph Chapman
- Nicholas Peters
- Sudarsanam Babu
- Thomas Feldhausen
- Ahmed Hassen
- Alexey Serov
- Hsuan-Hao Lu
- J.R. R Matheson
- Jaswinder Sharma
- Joseph Lukens
- Joshua Vaughan
- Lauren Heinrich
- Muneer Alshowkan
- Peeyush Nandwana
- Xiang Lyu
- Yousub Lee
- Adam Stevens
- Alex Roschli
- Amit K Naskar
- Amit Shyam
- Anees Alnajjar
- Beth L Armstrong
- Brian Gibson
- Brian Williams
- Cameron Adkins
- Christopher Fancher
- Chris Tyler
- Craig Blue
- David Olvera Trejo
- Gabriel Veith
- Georgios Polyzos
- Gordon Robertson
- Holly Humphrey
- Isha Bhandari
- James Szybist
- Jay Reynolds
- Jeff Brookins
- Jesse Heineman
- John Lindahl
- John Potter
- Jonathan Willocks
- Junbin Choi
- Khryslyn G Araño
- Liam White
- Logan Kearney
- Luke Meyer
- Mariam Kiran
- Marm Dixit
- Meghan Lamm
- Michael Borish
- Michael Toomey
- Michelle Lehmann
- Nihal Kanbargi
- Rangasayee Kannan
- Ritin Mathews
- Ritu Sahore
- Roger G Miller
- Ryan Dehoff
- Sarah Graham
- Scott Smith
- Steven Guzorek
- Todd Toops
- Vlastimil Kunc
- William Carter
- William Peter
- Yukinori Yamamoto

Here we present a solution for practically demonstrating path-aware routing and visualizing a self-driving network.

Technologies directed to polarization agnostic continuous variable quantum key distribution are described.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

The development of quantum networking requires architectures capable of dynamically reconfigurable entanglement distribution to meet diverse user needs and ensure tolerance against transmission disruptions.

This manufacturing method uses multifunctional materials distributed volumetrically to generate a stiffness-based architecture, where continuous surfaces can be created from flat, rapidly produced geometries.

Polarization drift in quantum networks is a major issue. Fiber transforms a transmitted signal’s polarization differently depending on its environment.

The lack of real-time insights into how materials evolve during laser powder bed fusion has limited the adoption by inhibiting part qualification. The developed approach provides key data needed to fabricate born qualified parts.

This invention addresses a key challenge in quantum communication networks by developing a controlled-NOT (CNOT) gate that operates between two degrees of freedom (DoFs) within a single photon: polarization and frequency.

An electrochemical cell has been specifically designed to maximize CO2 release from the seawater while also not changing the pH of the seawater before returning to the sea.

The ORNL invention addresses the challenge of poor mechanical properties of dry processed electrodes, improves their electrical properties, while improving their electrochemical performance.

Polarization drift in quantum networks is a major issue. Fiber transforms a transmitted signal’s polarization differently depending on its environment.