Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Brian Post
- Ali Passian
- Peter Wang
- Rama K Vasudevan
- Sergei V Kalinin
- Yongtao Liu
- Andrzej Nycz
- Blane Fillingim
- Chris Masuo
- Joseph Chapman
- Kevin M Roccapriore
- Maxim A Ziatdinov
- Nicholas Peters
- Sudarsanam Babu
- Thomas Feldhausen
- Ahmed Hassen
- Hsuan-Hao Lu
- J.R. R Matheson
- Joseph Lukens
- Joshua Vaughan
- Kyle Kelley
- Lauren Heinrich
- Muneer Alshowkan
- Peeyush Nandwana
- Yousub Lee
- Adam Stevens
- Alex Roschli
- Amit Shyam
- Anees Alnajjar
- Anton Ievlev
- Arpan Biswas
- Brian Gibson
- Brian Williams
- Cameron Adkins
- Christopher Fancher
- Chris Tyler
- Claire Marvinney
- Craig Blue
- David Olvera Trejo
- Gerd Duscher
- Gordon Robertson
- Harper Jordan
- Isha Bhandari
- Jay Reynolds
- Jeff Brookins
- Jesse Heineman
- Joel Asiamah
- Joel Dawson
- John Lindahl
- John Potter
- Liam Collins
- Liam White
- Luke Meyer
- Mahshid Ahmadi-Kalinina
- Mariam Kiran
- Marti Checa Nualart
- Michael Borish
- Nance Ericson
- Neus Domingo Marimon
- Olga S Ovchinnikova
- Rangasayee Kannan
- Ritin Mathews
- Roger G Miller
- Ryan Dehoff
- Sai Mani Prudhvi Valleti
- Sarah Graham
- Scott Smith
- Srikanth Yoginath
- Stephen Jesse
- Steven Guzorek
- Sumner Harris
- Utkarsh Pratiush
- Varisara Tansakul
- Vlastimil Kunc
- William Carter
- William Peter
- Yukinori Yamamoto

Dual-GP addresses limitations in traditional GPBO-driven autonomous experimentation by incorporating an additional surrogate observer and allowing human oversight, this technique improves optimization efficiency via data quality assessment and adaptability to unanticipated exp

Here we present a solution for practically demonstrating path-aware routing and visualizing a self-driving network.

Technologies directed to polarization agnostic continuous variable quantum key distribution are described.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

The development of quantum networking requires architectures capable of dynamically reconfigurable entanglement distribution to meet diverse user needs and ensure tolerance against transmission disruptions.

This manufacturing method uses multifunctional materials distributed volumetrically to generate a stiffness-based architecture, where continuous surfaces can be created from flat, rapidly produced geometries.

Polarization drift in quantum networks is a major issue. Fiber transforms a transmitted signal’s polarization differently depending on its environment.

The lack of real-time insights into how materials evolve during laser powder bed fusion has limited the adoption by inhibiting part qualification. The developed approach provides key data needed to fabricate born qualified parts.

This invention addresses a key challenge in quantum communication networks by developing a controlled-NOT (CNOT) gate that operates between two degrees of freedom (DoFs) within a single photon: polarization and frequency.