Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate (229)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (138)
- User Facilities (28)
Researcher
- Brian Post
- Peter Wang
- Andrzej Nycz
- Blane Fillingim
- Bo Shen
- Chris Masuo
- Praveen Cheekatamarla
- Sudarsanam Babu
- Thomas Feldhausen
- Vishaldeep Sharma
- Ahmed Hassen
- J.R. R Matheson
- James Manley
- Joshua Vaughan
- Kyle Gluesenkamp
- Lauren Heinrich
- Peeyush Nandwana
- Yousub Lee
- Adam Stevens
- Alex Roschli
- Amit Shyam
- Brian Gibson
- Cameron Adkins
- Christopher Fancher
- Chris Tyler
- Craig Blue
- David Olvera Trejo
- Easwaran Krishnan
- Gordon Robertson
- Hongbin Sun
- Isha Bhandari
- Jamieson Brechtl
- Jay Reynolds
- Jeff Brookins
- Jesse Heineman
- Joe Rendall
- John Lindahl
- John Potter
- Kashif Nawaz
- Liam White
- Luke Meyer
- Melanie Moses-DeBusk Debusk
- Michael Borish
- Muneeshwaran Murugan
- Rangasayee Kannan
- Ritin Mathews
- Roger G Miller
- Ryan Dehoff
- Sarah Graham
- Scott Smith
- Steven Guzorek
- Vlastimil Kunc
- William Carter
- William Peter
- Yifeng Hu
- Yukinori Yamamoto

The use of class A3 and A2L refrigerants to replace conventional hydrofluorocarbons for their low global warming potential (GWP) presents risks due to leaks of flammable mixtures that could result in fire or explosion.

The quality and quantity of refrigerant charge in any vapor compression-based heating and cooling system is vital to its energy efficiency, thermal capacity, and reliability.

In additive printing that utilizes multiple robotic agents to build, each agent, or “arm”, is currently limited to a prescribed path determined by the user.

This invention discusses the methodology to calibrating a multi-robot system with an arbitrary number of agents to obtain single coordinate frame with high accuracy.

Technologies are described directed to reducing weld additive part distortion with spot compressions integrated into the build process. The disclosed technologies can be used to make weld additive parts with potentially better geometrical accuracy.

Complex protective casings and housings are necessary for many applications, including combustion chambers of gas turbines used in aerospace engines. Manufacturing these components from forging and/or casting as a whole is challenging, costly, and time-consuming.

In wire-arc additive manufacturing and hot-wire laser additive manufacturing, wire is fed into a melt pool and melted through the arc or laser process.