Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate (21)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
- (-) Information Technology Services Directorate (2)
Researcher
- Diana E Hun
- Philip Boudreaux
- Som Shrestha
- Joseph Chapman
- Nicholas Peters
- Tomonori Saito
- Bryan Maldonado Puente
- Hsuan-Hao Lu
- Joseph Lukens
- Mahabir Bhandari
- Muneer Alshowkan
- Nolan Hayes
- Venugopal K Varma
- Zoriana Demchuk
- Achutha Tamraparni
- Adam Aaron
- Anees Alnajjar
- Brian Williams
- Catalin Gainaru
- Charles D Ottinger
- Gina Accawi
- Gurneesh Jatana
- Jason Jarnagin
- Karen Cortes Guzman
- Kevin Spakes
- Kuma Sumathipala
- Lilian V Swann
- Mariam Kiran
- Mark M Root
- Mark Provo II
- Mengjia Tang
- Natasha Ghezawi
- Peter Wang
- Rob Root
- Sam Hollifield
- Shiwanka Vidarshi Wanasinghe Wanasinghe Mudiyanselage
- Singanallur Venkatakrishnan
- Stephen M Killough
- Zhenglai Shen

Here we present a solution for practically demonstrating path-aware routing and visualizing a self-driving network.

Technologies directed to polarization agnostic continuous variable quantum key distribution are described.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

The ever-changing cellular communication landscape makes it difficult to identify, map, and localize commercial and private cellular base stations (PCBS).

The development of quantum networking requires architectures capable of dynamically reconfigurable entanglement distribution to meet diverse user needs and ensure tolerance against transmission disruptions.

We have been working to adapt background oriented schlieren (BOS) imaging to directly visualize building leakage, which is fast and easy.

Polarization drift in quantum networks is a major issue. Fiber transforms a transmitted signal’s polarization differently depending on its environment.

This invention addresses a key challenge in quantum communication networks by developing a controlled-NOT (CNOT) gate that operates between two degrees of freedom (DoFs) within a single photon: polarization and frequency.

Polarization drift in quantum networks is a major issue. Fiber transforms a transmitted signal’s polarization differently depending on its environment.

The incorporation of low embodied carbon building materials in the enclosure is increasing the fuel load for fire, increasing the demand for fire/flame retardants.