Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Diana E Hun
- Philip Boudreaux
- Som Shrestha
- Amit K Naskar
- Jaswinder Sharma
- Tomonori Saito
- Alexey Serov
- Bryan Maldonado Puente
- Logan Kearney
- Mahabir Bhandari
- Michael Toomey
- Nihal Kanbargi
- Nolan Hayes
- Venugopal K Varma
- Xiang Lyu
- Zoriana Demchuk
- Achutha Tamraparni
- Adam Aaron
- Arit Das
- Benjamin L Doughty
- Beth L Armstrong
- Catalin Gainaru
- Charles D Ottinger
- Christopher Bowland
- Edgar Lara-Curzio
- Felix L Paulauskas
- Frederic Vautard
- Gabriel Veith
- Georgios Polyzos
- Gina Accawi
- Gurneesh Jatana
- Holly Humphrey
- James Szybist
- Jonathan Willocks
- Junbin Choi
- Karen Cortes Guzman
- Khryslyn G Araño
- Kuma Sumathipala
- Mark M Root
- Marm Dixit
- Meghan Lamm
- Mengjia Tang
- Michelle Lehmann
- Natasha Ghezawi
- Peter Wang
- Ritu Sahore
- Robert E Norris Jr
- Santanu Roy
- Shiwanka Vidarshi Wanasinghe Wanasinghe Mudiyanselage
- Singanallur Venkatakrishnan
- Stephen M Killough
- Sumit Gupta
- Todd Toops
- Uvinduni Premadasa
- Vera Bocharova
- Zhenglai Shen

Efficient thermal management in polymers is essential for developing lightweight, high-strength materials with multifunctional capabilities.

The disclosure is directed to optimized fiber geometries for use in carbon fiber reinforced polymers with increased compressive strength per unit cost. The disclosed fiber geometries reduce the material processing costs as well as increase the compressive strength.

We have been working to adapt background oriented schlieren (BOS) imaging to directly visualize building leakage, which is fast and easy.

A novel and cost-effective process for the activation of carbon fibers was established.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

An electrochemical cell has been specifically designed to maximize CO2 release from the seawater while also not changing the pH of the seawater before returning to the sea.

The ORNL invention addresses the challenge of poor mechanical properties of dry processed electrodes, improves their electrical properties, while improving their electrochemical performance.

Hydrogen is in great demand, but production relies heavily on hydrocarbons utilization. This process contributes greenhouse gases release into the atmosphere.

The incorporation of low embodied carbon building materials in the enclosure is increasing the fuel load for fire, increasing the demand for fire/flame retardants.

ORNL contributes to developing the concept of passive CO2 DAC by designing and testing a hybrid sorption system. This design aims to leverage the advantages of CO2 solubility and selectivity offered by materials with selective sorption of adsorbents.