Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
- (-) Isotope Science and Enrichment Directorate (6)
Researcher
- Diana E Hun
- Philip Boudreaux
- Som Shrestha
- Tomonori Saito
- Bryan Maldonado Puente
- Mahabir Bhandari
- Mike Zach
- Nolan Hayes
- Venugopal K Varma
- Vlastimil Kunc
- Zoriana Demchuk
- Achutha Tamraparni
- Adam Aaron
- Ahmed Hassen
- Andrew F May
- Ben Garrison
- Brad Johnson
- Bruce Moyer
- Catalin Gainaru
- Charles D Ottinger
- Charlie Cook
- Christopher Hershey
- Craig Blue
- Dan Coughlin
- Daniel Rasmussen
- Debjani Pal
- Gina Accawi
- Gurneesh Jatana
- Hsin Wang
- James Klett
- Jeffrey Einkauf
- Jennifer M Pyles
- Jim Tobin
- John Lindahl
- Josh Crabtree
- Justin Griswold
- Karen Cortes Guzman
- Kim Sitzlar
- Kuma Sumathipala
- Kuntal De
- Laetitia H Delmau
- Luke Sadergaski
- Mark M Root
- Mengjia Tang
- Merlin Theodore
- Natasha Ghezawi
- Nedim Cinbiz
- Padhraic L Mulligan
- Peter Wang
- Sandra Davern
- Shiwanka Vidarshi Wanasinghe Wanasinghe Mudiyanselage
- Singanallur Venkatakrishnan
- Stephen M Killough
- Steven Guzorek
- Subhabrata Saha
- Tony Beard
- Vipin Kumar
- Zhenglai Shen

Ruthenium is recovered from used nuclear fuel in an oxidizing environment by depositing the volatile RuO4 species onto a polymeric substrate.

We have been working to adapt background oriented schlieren (BOS) imaging to directly visualize building leakage, which is fast and easy.

The incorporation of low embodied carbon building materials in the enclosure is increasing the fuel load for fire, increasing the demand for fire/flame retardants.

The technologies provide a system and method of needling of veiled AS4 fabric tape.

The traditional window installation process involves many steps. These are becoming even more complex with newer construction requirements such as installation of windows over exterior continuous insulation walls.

Through the use of splicing methods, joining two different fiber types in the tow stage of the process enables great benefits to the strength of the material change.

Spherical powders applied to nuclear targetry for isotope production will allow for enhanced heat transfer properties, tailored thermal conductivity and minimize time required for target fabrication and post processing.