Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate
(229)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (138)
- User Facilities (28)
Researcher
- Diana E Hun
- Som Shrestha
- Philip Boudreaux
- Tomonori Saito
- Alex Plotkowski
- Amit Shyam
- Anees Alnajjar
- Bryan Maldonado Puente
- Nolan Hayes
- Srikanth Yoginath
- Zoriana Demchuk
- Daniel Jacobson
- James A Haynes
- James J Nutaro
- Mahabir Bhandari
- Nageswara Rao
- Pratishtha Shukla
- Sergiy Kalnaus
- Shiwanka Vidarshi Wanasinghe Wanasinghe Mudiyanselage
- Sudip Seal
- Sumit Bahl
- Venugopal K Varma
- Achutha Tamraparni
- Adam Aaron
- Alice Perrin
- Ali Passian
- Andre O Desjarlais
- Andres Marquez Rossy
- Beth L Armstrong
- Catalin Gainaru
- Charles D Ottinger
- Craig A Bridges
- Femi Omitaomu
- Georgios Polyzos
- Gerry Knapp
- Gina Accawi
- Gurneesh Jatana
- Haowen Xu
- Harper Jordan
- Jaswinder Sharma
- Joel Asiamah
- Joel Dawson
- Jovid Rakhmonov
- Karen Cortes Guzman
- Kuma Sumathipala
- Mariam Kiran
- Mark M Root
- Mengjia Tang
- Nance Ericson
- Nancy Dudney
- Natasha Ghezawi
- Nicholas Richter
- Peeyush Nandwana
- Peter Wang
- Ryan Dehoff
- Sheng Dai
- Stephen M Killough
- Sunyong Kwon
- Varisara Tansakul
- Venkatakrishnan Singanallur Vaidyanathan
- Yifang Liu
- Ying Yang
- Zhenglai Shen

The eDICEML digital twin is proposed which emulates networks and hosts of an instrument-computing ecosystem. It runs natively on an ecosystem’s host or as a portable virtual machine.

Mechanism-Based Trait Inference in Plants Using Multiplex Networks, AI Agents, and Translation Tools
This system enables the modular design and optimization of complex plant traits by organizing genes and regulatory mechanisms into interpretable clades.

Mechanism-Based Biological Inference via Multiplex Networks, AI Agents and Cross-Species Translation
This invention provides a platform that uses AI agents and biological networks to uncover and interpret disease-relevant biological mechanisms.

Here we present a solution for practically demonstrating path-aware routing and visualizing a self-driving network.

We’ve developed a more cost-effective cable driven robot system for installing prefabricated panelized building envelopes. Traditional cable robots use eight cables, which require extra support structures, making setup complex and expensive.

Currently available cast Al alloys are not suitable for various high-performance conductor applications, such as rotor, inverter, windings, busbar, heat exchangers/sinks, etc.

The invented alloys are a new family of Al-Mg alloys. This new family of Al-based alloys demonstrate an excellent ductility (10 ± 2 % elongation) despite the high content of impurities commonly observed in recycled aluminum.

We have been working to adapt background oriented schlieren (BOS) imaging to directly visualize building leakage, which is fast and easy.

We developed and incorporated two innovative mPET/Cu and mPET/Al foils as current collectors in LIBs to enhance cell energy density under XFC conditions.