Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Andrzej Nycz
- Chris Masuo
- Luke Meyer
- William Carter
- Adam Siekmann
- Alexander I Wiechert
- Alex Walters
- Benjamin Manard
- Bruce Hannan
- Charles F Weber
- Costas Tsouris
- Derek Dwyer
- Hong Wang
- Hyeonsup Lim
- Joanna Mcfarlane
- Jonathan Willocks
- Joshua Vaughan
- Loren L Funk
- Louise G Evans
- Matt Vick
- Mengdawn Cheng
- Paula Cable-Dunlap
- Peter Wang
- Polad Shikhaliev
- Richard L. Reed
- Theodore Visscher
- Vandana Rallabandi
- Vivek Sujan
- Vladislav N Sedov
- Yacouba Diawara

High-gradient magnetic filtration (HGMF) is a non-destructive separation technique that captures magnetic constituents from a matrix containing other non-magnetic species. One characteristic that actinide metals share across much of the group is that they are magnetic.

ORNL has developed a large area thermal neutron detector based on 6LiF/ZnS(Ag) scintillator coupled with wavelength shifting fibers. The detector uses resistive charge divider-based position encoding.

Pyrolysis evolved gas analysis – mass spectrometry (EGA-MS) and pyrolysis gas chromatography – MS (GC-MS) – are powerful analytical tools for polymer characterization.

No readily available public data exists for vehicle class and weight information that covers the entire U.S. highway network. The Travel Monitoring Analysis System, managed by the Federal Highway Administration covers only less than 1% of the US highway network.

We have developed an aerosol sampling technique to enable collection of trace materials such as actinides in the atmosphere.

Pairing hybrid neural network modeling techniques with artificial intelligence, or AI, controls has resulted in a unique hybrid system that creates a smart solution for traffic-signal timing.