Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Ahmed Hassen
- Vlastimil Kunc
- Steven Guzorek
- Ali Passian
- Vipin Kumar
- Brian Post
- David Nuttall
- Joseph Chapman
- Nicholas Peters
- Soydan Ozcan
- Adam Willoughby
- Dan Coughlin
- Hsuan-Hao Lu
- Jim Tobin
- Joseph Lukens
- Muneer Alshowkan
- Pum Kim
- Rishi Pillai
- Segun Isaac Talabi
- Tyler Smith
- Uday Vaidya
- Umesh N MARATHE
- Adam Stevens
- Alex Roschli
- Anees Alnajjar
- Brandon Johnston
- Brian Williams
- Brittany Rodriguez
- Bruce A Pint
- Charles Hawkins
- Claire Marvinney
- Craig Blue
- Erin Webb
- Evin Carter
- Georges Chahine
- Halil Tekinalp
- Harper Jordan
- Jeremy Malmstead
- Jiheon Jun
- Joel Asiamah
- Joel Dawson
- John Lindahl
- Josh Crabtree
- Julian Charron
- Katie Copenhaver
- Kim Sitzlar
- Kitty K Mccracken
- Komal Chawla
- Mariam Kiran
- Marie Romedenne
- Merlin Theodore
- Nadim Hmeidat
- Nance Ericson
- Oluwafemi Oyedeji
- Priyanshi Agrawal
- Ryan Ogle
- Sana Elyas
- Srikanth Yoginath
- Steve Bullock
- Subhabrata Saha
- Sudarsanam Babu
- Thomas Feldhausen
- Varisara Tansakul
- Xianhui Zhao
- Yong Chae Lim
- Zhili Feng

Here we present a solution for practically demonstrating path-aware routing and visualizing a self-driving network.

Technologies directed to polarization agnostic continuous variable quantum key distribution are described.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

The development of quantum networking requires architectures capable of dynamically reconfigurable entanglement distribution to meet diverse user needs and ensure tolerance against transmission disruptions.

This manufacturing method uses multifunctional materials distributed volumetrically to generate a stiffness-based architecture, where continuous surfaces can be created from flat, rapidly produced geometries.

Through utilizing a two function splice we can increase the splice strength for opposing tows.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

Polarization drift in quantum networks is a major issue. Fiber transforms a transmitted signal’s polarization differently depending on its environment.

A novel method that prevents detachment of an optical fiber from a metal/alloy tube and allows strain measurement up to higher temperatures, about 800 C has been developed. Standard commercial adhesives typically only survive up to about 400 C.

This invention addresses a key challenge in quantum communication networks by developing a controlled-NOT (CNOT) gate that operates between two degrees of freedom (DoFs) within a single photon: polarization and frequency.