Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Brian Post
- Ahmed Hassen
- Vlastimil Kunc
- Steven Guzorek
- Ali Passian
- Peter Wang
- Sudarsanam Babu
- Vipin Kumar
- Andrzej Nycz
- Blane Fillingim
- Chris Masuo
- David Nuttall
- Joseph Chapman
- Nicholas Peters
- Soydan Ozcan
- Thomas Feldhausen
- Adam Stevens
- Alex Roschli
- Dan Coughlin
- Hsuan-Hao Lu
- J.R. R Matheson
- Jim Tobin
- Joseph Lukens
- Joshua Vaughan
- Lauren Heinrich
- Muneer Alshowkan
- Peeyush Nandwana
- Pum Kim
- Segun Isaac Talabi
- Tyler Smith
- Uday Vaidya
- Umesh N MARATHE
- Yousub Lee
- Amit Shyam
- Anees Alnajjar
- Brian Gibson
- Brian Williams
- Brittany Rodriguez
- Cameron Adkins
- Christopher Fancher
- Chris Tyler
- Claire Marvinney
- Craig Blue
- David Olvera Trejo
- Erin Webb
- Evin Carter
- Georges Chahine
- Gordon Robertson
- Halil Tekinalp
- Harper Jordan
- Isha Bhandari
- Jay Reynolds
- Jeff Brookins
- Jeremy Malmstead
- Jesse Heineman
- Joel Asiamah
- Joel Dawson
- John Lindahl
- John Potter
- Josh Crabtree
- Julian Charron
- Katie Copenhaver
- Kim Sitzlar
- Kitty K Mccracken
- Komal Chawla
- Liam White
- Luke Meyer
- Mariam Kiran
- Merlin Theodore
- Michael Borish
- Nadim Hmeidat
- Nance Ericson
- Oluwafemi Oyedeji
- Rangasayee Kannan
- Ritin Mathews
- Roger G Miller
- Ryan Dehoff
- Ryan Ogle
- Sana Elyas
- Sarah Graham
- Scott Smith
- Srikanth Yoginath
- Steve Bullock
- Subhabrata Saha
- Varisara Tansakul
- William Carter
- William Peter
- Xianhui Zhao
- Yukinori Yamamoto

Here we present a solution for practically demonstrating path-aware routing and visualizing a self-driving network.

Technologies directed to polarization agnostic continuous variable quantum key distribution are described.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

The development of quantum networking requires architectures capable of dynamically reconfigurable entanglement distribution to meet diverse user needs and ensure tolerance against transmission disruptions.

This manufacturing method uses multifunctional materials distributed volumetrically to generate a stiffness-based architecture, where continuous surfaces can be created from flat, rapidly produced geometries.

Through utilizing a two function splice we can increase the splice strength for opposing tows.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

Polarization drift in quantum networks is a major issue. Fiber transforms a transmitted signal’s polarization differently depending on its environment.

The lack of real-time insights into how materials evolve during laser powder bed fusion has limited the adoption by inhibiting part qualification. The developed approach provides key data needed to fabricate born qualified parts.

This invention addresses a key challenge in quantum communication networks by developing a controlled-NOT (CNOT) gate that operates between two degrees of freedom (DoFs) within a single photon: polarization and frequency.