Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Ahmed Hassen
- Vlastimil Kunc
- Corson Cramer
- Steve Bullock
- Steven Guzorek
- Vipin Kumar
- Brian Post
- David Nuttall
- Greg Larsen
- James Klett
- Joseph Chapman
- Nicholas Peters
- Soydan Ozcan
- Trevor Aguirre
- Craig Blue
- Dan Coughlin
- Hsuan-Hao Lu
- Jim Tobin
- John Lindahl
- Joseph Lukens
- Muneer Alshowkan
- Pum Kim
- Segun Isaac Talabi
- Tyler Smith
- Uday Vaidya
- Umesh N MARATHE
- Adam Stevens
- Alex Roschli
- Anees Alnajjar
- Beth L Armstrong
- Brian Williams
- Brittany Rodriguez
- Charlie Cook
- Christopher Hershey
- Christopher Ledford
- Daniel Rasmussen
- David J Mitchell
- Dustin Gilmer
- Erin Webb
- Evin Carter
- Georges Chahine
- Halil Tekinalp
- Jeremy Malmstead
- Jordan Wright
- Josh Crabtree
- Julian Charron
- Katie Copenhaver
- Kim Sitzlar
- Kitty K Mccracken
- Komal Chawla
- Mariam Kiran
- Merlin Theodore
- Michael Kirka
- Nadim Hmeidat
- Oluwafemi Oyedeji
- Ryan Ogle
- Sana Elyas
- Subhabrata Saha
- Sudarsanam Babu
- Thomas Feldhausen
- Tomonori Saito
- Tony Beard
- Xianhui Zhao

Here we present a solution for practically demonstrating path-aware routing and visualizing a self-driving network.

Technologies directed to polarization agnostic continuous variable quantum key distribution are described.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

The development of quantum networking requires architectures capable of dynamically reconfigurable entanglement distribution to meet diverse user needs and ensure tolerance against transmission disruptions.

The technologies provide additively manufactured thermal protection system.

This manufacturing method uses multifunctional materials distributed volumetrically to generate a stiffness-based architecture, where continuous surfaces can be created from flat, rapidly produced geometries.

Through utilizing a two function splice we can increase the splice strength for opposing tows.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

Polarization drift in quantum networks is a major issue. Fiber transforms a transmitted signal’s polarization differently depending on its environment.

This invention addresses a key challenge in quantum communication networks by developing a controlled-NOT (CNOT) gate that operates between two degrees of freedom (DoFs) within a single photon: polarization and frequency.

This invention focuses on improving the ceramic yield of preceramic polymers by tuning the crosslinking process that occurs during vat photopolymerization (VP).