Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Ahmed Hassen
- Vlastimil Kunc
- Steven Guzorek
- Ali Passian
- Brian Post
- Michael Kirka
- Vipin Kumar
- Adam Stevens
- David Nuttall
- Joseph Chapman
- Nicholas Peters
- Rangasayee Kannan
- Ryan Dehoff
- Soydan Ozcan
- Christopher Ledford
- Dan Coughlin
- Hsuan-Hao Lu
- Jim Tobin
- Joseph Lukens
- Muneer Alshowkan
- Peeyush Nandwana
- Pum Kim
- Segun Isaac Talabi
- Steve Bullock
- Sudarsanam Babu
- Tyler Smith
- Uday Vaidya
- Umesh N MARATHE
- Alex Roschli
- Alice Perrin
- Amir K Ziabari
- Anees Alnajjar
- Beth L Armstrong
- Brian Williams
- Brittany Rodriguez
- Claire Marvinney
- Corson Cramer
- Craig Blue
- Erin Webb
- Evin Carter
- Fred List III
- Georges Chahine
- Halil Tekinalp
- Harper Jordan
- James Klett
- Jeremy Malmstead
- Joel Asiamah
- Joel Dawson
- John Lindahl
- Josh Crabtree
- Julian Charron
- Katie Copenhaver
- Keith Carver
- Kim Sitzlar
- Kitty K Mccracken
- Komal Chawla
- Mariam Kiran
- Merlin Theodore
- Nadim Hmeidat
- Nance Ericson
- Oluwafemi Oyedeji
- Patxi Fernandez-Zelaia
- Philip Bingham
- Richard Howard
- Roger G Miller
- Ryan Ogle
- Sana Elyas
- Sarah Graham
- Singanallur Venkatakrishnan
- Srikanth Yoginath
- Subhabrata Saha
- Thomas Butcher
- Thomas Feldhausen
- Trevor Aguirre
- Varisara Tansakul
- Vincent Paquit
- William Peter
- Xianhui Zhao
- Yan-Ru Lin
- Ying Yang
- Yukinori Yamamoto

Here we present a solution for practically demonstrating path-aware routing and visualizing a self-driving network.

Technologies directed to polarization agnostic continuous variable quantum key distribution are described.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

The development of quantum networking requires architectures capable of dynamically reconfigurable entanglement distribution to meet diverse user needs and ensure tolerance against transmission disruptions.

A pressure burst feature has been designed and demonstrated for relieving potentially hazardous excess pressure within irradiation capsules used in the ORNL High Flux Isotope Reactor (HFIR).

This manufacturing method uses multifunctional materials distributed volumetrically to generate a stiffness-based architecture, where continuous surfaces can be created from flat, rapidly produced geometries.

Through utilizing a two function splice we can increase the splice strength for opposing tows.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

Polarization drift in quantum networks is a major issue. Fiber transforms a transmitted signal’s polarization differently depending on its environment.

This invention addresses a key challenge in quantum communication networks by developing a controlled-NOT (CNOT) gate that operates between two degrees of freedom (DoFs) within a single photon: polarization and frequency.