Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate
(29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate (229)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (138)
- User Facilities (28)
Researcher
- Ahmed Hassen
- Vlastimil Kunc
- Steven Guzorek
- Vipin Kumar
- David Nuttall
- Brian Post
- Dan Coughlin
- Joseph Chapman
- Nadim Hmeidat
- Nicholas Peters
- Soydan Ozcan
- Steve Bullock
- Tyler Smith
- Brittany Rodriguez
- Hsuan-Hao Lu
- Jim Tobin
- Joseph Lukens
- Muneer Alshowkan
- Pum Kim
- Segun Isaac Talabi
- Subhabrata Saha
- Uday Vaidya
- Umesh N MARATHE
- Adam Stevens
- Alex Roschli
- Anees Alnajjar
- Brian Sanders
- Brian Williams
- Craig Blue
- Erin Webb
- Evin Carter
- Georges Chahine
- Gerald Tuskan
- Halil Tekinalp
- Ilenne Del Valle Kessra
- Isaiah Dishner
- Jeff Foster
- Jeremy Malmstead
- Jerry Parks
- John F Cahill
- John Lindahl
- Josh Crabtree
- Josh Michener
- Julian Charron
- Katie Copenhaver
- Kim Sitzlar
- Kitty K Mccracken
- Komal Chawla
- Liangyu Qian
- Mariam Kiran
- Merlin Theodore
- Oluwafemi Oyedeji
- Paul Abraham
- Ryan Ogle
- Sana Elyas
- Sudarsanam Babu
- Thomas Feldhausen
- Vilmos Kertesz
- Xianhui Zhao
- Xiaohan Yang
- Yang Liu

The technology will offer supportless DIW of complex structures using vinyl ester resin, facilitated by multidirectional 6 axis printing.

Here we present a solution for practically demonstrating path-aware routing and visualizing a self-driving network.

Enzymes for synthesis of sequenced oligoamide triads and tetrads that can be polymerized into sequenced copolyamides.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

Technologies directed to polarization agnostic continuous variable quantum key distribution are described.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

The development of quantum networking requires architectures capable of dynamically reconfigurable entanglement distribution to meet diverse user needs and ensure tolerance against transmission disruptions.

This manufacturing method uses multifunctional materials distributed volumetrically to generate a stiffness-based architecture, where continuous surfaces can be created from flat, rapidly produced geometries.

Through utilizing a two function splice we can increase the splice strength for opposing tows.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

Polarization drift in quantum networks is a major issue. Fiber transforms a transmitted signal’s polarization differently depending on its environment.

Reflective and emissive surfaces are designed with heat retention as opposed to the current state of the art oven and furnaces which use non-reflective surfaces. Heat is absorbed and transferred to the exterior of the heated appliances.

This invention addresses a key challenge in quantum communication networks by developing a controlled-NOT (CNOT) gate that operates between two degrees of freedom (DoFs) within a single photon: polarization and frequency.