Filter Results
Related Organization
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate (229)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (138)
- User Facilities (28)
- (-) Biological and Environmental Systems Science Directorate (29)
Researcher
- Ahmed Hassen
- Vlastimil Kunc
- Adam M Guss
- Steven Guzorek
- Vipin Kumar
- David Nuttall
- Josh Michener
- Soydan Ozcan
- Brian Post
- Dan Coughlin
- Joseph Chapman
- Liangyu Qian
- Nadim Hmeidat
- Nicholas Peters
- Steve Bullock
- Tyler Smith
- Andrzej Nycz
- Austin L Carroll
- Biruk A Feyissa
- Brittany Rodriguez
- Carrie Eckert
- Daniel Jacobson
- Halil Tekinalp
- Hsuan-Hao Lu
- Isaiah Dishner
- Jeff Foster
- Jim Tobin
- John F Cahill
- Joseph Lukens
- Kuntal De
- Muneer Alshowkan
- Pum Kim
- Segun Isaac Talabi
- Serena Chen
- Subhabrata Saha
- Udaya C Kalluri
- Uday Vaidya
- Umesh N MARATHE
- Vilmos Kertesz
- Xianhui Zhao
- Xiaohan Yang
- Adam Stevens
- Alex Roschli
- Alex Walters
- Anees Alnajjar
- Brian Sanders
- Brian Williams
- Chris Masuo
- Clay Leach
- Craig Blue
- Dali Wang
- Debjani Pal
- Erin Webb
- Evin Carter
- Georges Chahine
- Gerald Tuskan
- Ilenne Del Valle Kessra
- Jay D Huenemann
- Jeremy Malmstead
- Jerry Parks
- Jian Chen
- Joanna Tannous
- John Lindahl
- Josh Crabtree
- Julian Charron
- Katie Copenhaver
- Kim Sitzlar
- Kitty K Mccracken
- Komal Chawla
- Kyle Davis
- Mariam Kiran
- Mengdawn Cheng
- Merlin Theodore
- Nandhini Ashok
- Oluwafemi Oyedeji
- Paul Abraham
- Paula Cable-Dunlap
- Ryan Ogle
- Sana Elyas
- Sanjita Wasti
- Sudarsanam Babu
- Thomas Feldhausen
- Vincent Paquit
- Wei Zhang
- William Alexander
- Yang Liu
- Yasemin Kaygusuz
- Zhili Feng

The technology will offer supportless DIW of complex structures using vinyl ester resin, facilitated by multidirectional 6 axis printing.

Mechanism-Based Trait Inference in Plants Using Multiplex Networks, AI Agents, and Translation Tools
This system enables the modular design and optimization of complex plant traits by organizing genes and regulatory mechanisms into interpretable clades.

Mechanism-Based Biological Inference via Multiplex Networks, AI Agents and Cross-Species Translation
This invention provides a platform that uses AI agents and biological networks to uncover and interpret disease-relevant biological mechanisms.

We have developed a novel extrusion-based 3D printing technique that can achieve a resolution of 0.51 mm layer thickness, and catalyst loading of 44% and 90.5% before and after drying, respectively.

Here we present a solution for practically demonstrating path-aware routing and visualizing a self-driving network.

Enzymes for synthesis of sequenced oligoamide triads and tetrads that can be polymerized into sequenced copolyamides.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

We tested 48 diverse homologs of SfaB and identified several enzyme variants that were more active than SfaB at synthesizing the nylon-6,6 monomer.

Technologies directed to polarization agnostic continuous variable quantum key distribution are described.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

We have developed thermophilic bacterial strains that can break down PET and consume ethylene glycol and TPA. This will help enable modern, petroleum-derived plastics to be converted into value-added chemicals.

By engineering the Serine Integrase Assisted Genome Engineering (SAGE) genetic toolkit in an industrial strain of Aspergillus niger, we have established its proof of principle for applicability in Eukaryotes.