Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Ahmed Hassen
- Vlastimil Kunc
- Steven Guzorek
- Vipin Kumar
- Beth L Armstrong
- Brian Post
- David Nuttall
- Gabriel Veith
- Guang Yang
- Joseph Chapman
- Lawrence {Larry} M Anovitz
- Michelle Lehmann
- Nicholas Peters
- Soydan Ozcan
- Tomonori Saito
- Dan Coughlin
- Ethan Self
- Hsuan-Hao Lu
- Jaswinder Sharma
- Jim Tobin
- Joseph Lukens
- Muneer Alshowkan
- Pum Kim
- Robert Sacci
- Segun Isaac Talabi
- Sergiy Kalnaus
- Tyler Smith
- Uday Vaidya
- Umesh N MARATHE
- Adam Stevens
- Alexey Serov
- Alex Roschli
- Amanda Musgrove
- Amit K Naskar
- Andrew G Stack
- Anees Alnajjar
- Anisur Rahman
- Anna M Mills
- Brian Williams
- Brittany Rodriguez
- Chanho Kim
- Craig Blue
- Erin Webb
- Evin Carter
- Felipe Polo Garzon
- Georges Chahine
- Georgios Polyzos
- Halil Tekinalp
- Ilias Belharouak
- Jeremy Malmstead
- John Lindahl
- Josh Crabtree
- Julian Charron
- Juliane Weber
- Jun Yang
- Junyan Zhang
- Katie Copenhaver
- Khryslyn G Araño
- Kim Sitzlar
- Kitty K Mccracken
- Komal Chawla
- Logan Kearney
- Mariam Kiran
- Matthew S Chambers
- Merlin Theodore
- Michael Toomey
- Nadim Hmeidat
- Nancy Dudney
- Nihal Kanbargi
- Oluwafemi Oyedeji
- Peng Yang
- Ryan Ogle
- Sai Krishna Reddy Adapa
- Sana Elyas
- Steve Bullock
- Subhabrata Saha
- Sudarsanam Babu
- Thomas Feldhausen
- Vera Bocharova
- Xiang Lyu
- Xianhui Zhao

This invention utilizes a custom-synthesized vinyl trifluoromethanesulfonimide (VTFSI) salt and an alcohol containing small molecule or polymer for the synthesis of novel single-ion conducting polymer electrolytes for the use in Li-ion and beyond Li-ion batteries, fuel cells,

Here we present a solution for practically demonstrating path-aware routing and visualizing a self-driving network.

Technologies directed to polarization agnostic continuous variable quantum key distribution are described.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

CO2 capture by mineral looping, either using calcium or magnesium precursors requires that the materials be calcined after CO2 is captured from the atmosphere. This separates the CO2 for later sequestration and returned the starting material to its original state.

The development of quantum networking requires architectures capable of dynamically reconfigurable entanglement distribution to meet diverse user needs and ensure tolerance against transmission disruptions.

This manufacturing method uses multifunctional materials distributed volumetrically to generate a stiffness-based architecture, where continuous surfaces can be created from flat, rapidly produced geometries.

Through utilizing a two function splice we can increase the splice strength for opposing tows.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

Polarization drift in quantum networks is a major issue. Fiber transforms a transmitted signal’s polarization differently depending on its environment.

This is a novel approach to enhance the performance and durability of all-solid-state batteries (ASSBs) by focusing on two primary components: the Si anode and the thin electrolyte integration.