Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities
(27)
Researcher
- Ahmed Hassen
- Vlastimil Kunc
- Steven Guzorek
- Vipin Kumar
- Brian Post
- David Nuttall
- Joseph Chapman
- Kyle Kelley
- Nicholas Peters
- Rama K Vasudevan
- Soydan Ozcan
- Dan Coughlin
- Hsuan-Hao Lu
- Jim Tobin
- Joseph Lukens
- Muneer Alshowkan
- Pum Kim
- Segun Isaac Talabi
- Sergei V Kalinin
- Stephen Jesse
- Tyler Smith
- Uday Vaidya
- Umesh N MARATHE
- Adam Stevens
- Alex Roschli
- An-Ping Li
- Andrew Lupini
- Anees Alnajjar
- Anton Ievlev
- Bogdan Dryzhakov
- Brian Williams
- Brittany Rodriguez
- Craig Blue
- Erin Webb
- Evin Carter
- Georges Chahine
- Halil Tekinalp
- Hoyeon Jeon
- Huixin (anna) Jiang
- Jamieson Brechtl
- Jeremy Malmstead
- Jewook Park
- John Lindahl
- Josh Crabtree
- Julian Charron
- Kai Li
- Kashif Nawaz
- Katie Copenhaver
- Kevin M Roccapriore
- Kim Sitzlar
- Kitty K Mccracken
- Komal Chawla
- Liam Collins
- Mariam Kiran
- Marti Checa Nualart
- Maxim A Ziatdinov
- Merlin Theodore
- Nadim Hmeidat
- Neus Domingo Marimon
- Olga S Ovchinnikova
- Oluwafemi Oyedeji
- Ondrej Dyck
- Ryan Ogle
- Saban Hus
- Sana Elyas
- Steve Bullock
- Steven Randolph
- Subhabrata Saha
- Sudarsanam Babu
- Thomas Feldhausen
- Xianhui Zhao
- Yongtao Liu

Here we present a solution for practically demonstrating path-aware routing and visualizing a self-driving network.

Technologies directed to polarization agnostic continuous variable quantum key distribution are described.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

The development of quantum networking requires architectures capable of dynamically reconfigurable entanglement distribution to meet diverse user needs and ensure tolerance against transmission disruptions.

This manufacturing method uses multifunctional materials distributed volumetrically to generate a stiffness-based architecture, where continuous surfaces can be created from flat, rapidly produced geometries.

Through utilizing a two function splice we can increase the splice strength for opposing tows.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

Polarization drift in quantum networks is a major issue. Fiber transforms a transmitted signal’s polarization differently depending on its environment.

This invention addresses a key challenge in quantum communication networks by developing a controlled-NOT (CNOT) gate that operates between two degrees of freedom (DoFs) within a single photon: polarization and frequency.

The invention introduces a novel, customizable method to create, manipulate, and erase polar topological structures in ferroelectric materials using atomic force microscopy.