Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities
(27)
Researcher
- Alex Roschli
- Ben Lamm
- Beth L Armstrong
- Bogdan Dryzhakov
- Bruce A Pint
- Christopher Rouleau
- Costas Tsouris
- Erin Webb
- Evin Carter
- Gs Jung
- Gyoung Gug Jang
- Ilia N Ivanov
- Ivan Vlassiouk
- Jeremy Malmstead
- Jong K Keum
- Kitty K Mccracken
- Kyle Kelley
- Meghan Lamm
- Mina Yoon
- Oluwafemi Oyedeji
- Radu Custelcean
- Shajjad Chowdhury
- Soydan Ozcan
- Steven J Zinkle
- Steven Randolph
- Tim Graening Seibert
- Tolga Aytug
- Tyler Smith
- Weicheng Zhong
- Wei Tang
- Xiang Chen
- Xianhui Zhao
- Yanli Wang
- Ying Yang
- Yutai Kato

The use of biomass fiber reinforcement for polymer composite applications, like those in buildings or automotive, has expanded rapidly due to the low cost, high stiffness, and inherent renewability of these materials. Biomass are commonly disposed of as waste.

High coercive fields prevalent in wurtzite ferroelectrics present a significant challenge, as they hinder efficient polarization switching, which is essential for microelectronic applications.

New demands in electric vehicles have resulted in design changes for the power electronic components such as the capacitor to incur lower volume, higher operating temperatures, and dielectric properties (high dielectric permittivity and high electrical breakdown strengths).

This technology is a laser-based heating unit that offers rapid heating profiles on a research scale with minimal incidental heating of materials processing environments.

The first wall and blanket of a fusion energy reactor must maintain structural integrity and performance over long operational periods under neutron irradiation and minimize long-lived radioactive waste.

A novel molecular sorbent system for low energy CO2 regeneration is developed by employing CO2-responsive molecules and salt in aqueous media where a precipitating CO2--salt fractal network is formed, resulting in solid-phase formation and sedimentation.
Aromas play a significant role in the quality and safety of food, beverages, and even manufactured products. The ability to detect and interpret these aromas accurately can enhance product safety and consumer satisfaction.