Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Joseph Chapman
- Nicholas Peters
- Adam Willoughby
- Hsuan-Hao Lu
- Joseph Lukens
- Muneer Alshowkan
- Rishi Pillai
- Alex Roschli
- Anees Alnajjar
- Brandon Johnston
- Brian Williams
- Bruce A Pint
- Charles Hawkins
- Erin Webb
- Evin Carter
- Jeremy Malmstead
- Jiheon Jun
- Kitty K Mccracken
- Mariam Kiran
- Marie Romedenne
- Mengdawn Cheng
- Oluwafemi Oyedeji
- Paula Cable-Dunlap
- Priyanshi Agrawal
- Soydan Ozcan
- Tyler Smith
- Xianhui Zhao
- Yong Chae Lim
- Zhili Feng

Here we present a solution for practically demonstrating path-aware routing and visualizing a self-driving network.

Technologies directed to polarization agnostic continuous variable quantum key distribution are described.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

The development of quantum networking requires architectures capable of dynamically reconfigurable entanglement distribution to meet diverse user needs and ensure tolerance against transmission disruptions.

Polarization drift in quantum networks is a major issue. Fiber transforms a transmitted signal’s polarization differently depending on its environment.

A novel method that prevents detachment of an optical fiber from a metal/alloy tube and allows strain measurement up to higher temperatures, about 800 C has been developed. Standard commercial adhesives typically only survive up to about 400 C.

This invention addresses a key challenge in quantum communication networks by developing a controlled-NOT (CNOT) gate that operates between two degrees of freedom (DoFs) within a single photon: polarization and frequency.

The use of biomass fiber reinforcement for polymer composite applications, like those in buildings or automotive, has expanded rapidly due to the low cost, high stiffness, and inherent renewability of these materials. Biomass are commonly disposed of as waste.

Test facilities to evaluate materials compatibility in hydrogen are abundant for high pressure and low temperature (<100C).

Polarization drift in quantum networks is a major issue. Fiber transforms a transmitted signal’s polarization differently depending on its environment.

We have developed an aerosol sampling technique to enable collection of trace materials such as actinides in the atmosphere.