Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (26)
- Computing and Computational Sciences Directorate (38)
- Energy Science and Technology Directorate (223)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate
(20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (135)
- User Facilities
(27)
Researcher
- Kyle Kelley
- Rama K Vasudevan
- Sergei V Kalinin
- Alexandre Sorokine
- Alex Roschli
- Anton Ievlev
- Bogdan Dryzhakov
- Clinton Stipek
- Daniel Adams
- Erin Webb
- Evin Carter
- Jeremy Malmstead
- Jessica Moehl
- Kevin M Roccapriore
- Kitty K Mccracken
- Liam Collins
- Marti Checa Nualart
- Maxim A Ziatdinov
- Mengdawn Cheng
- Neus Domingo Marimon
- Olga S Ovchinnikova
- Oluwafemi Oyedeji
- Paula Cable-Dunlap
- Philipe Ambrozio Dias
- Soydan Ozcan
- Stephen Jesse
- Steven Randolph
- Taylor Hauser
- Tyler Smith
- Viswadeep Lebakula
- Xianhui Zhao
- Yongtao Liu

Understanding building height is imperative to the overall study of energy efficiency, population distribution, urban morphologies, emergency response, among others. Currently, existing approaches for modelling building height at scale are hindered by two pervasive issues.

The invention introduces a novel, customizable method to create, manipulate, and erase polar topological structures in ferroelectric materials using atomic force microscopy.

The use of biomass fiber reinforcement for polymer composite applications, like those in buildings or automotive, has expanded rapidly due to the low cost, high stiffness, and inherent renewability of these materials. Biomass are commonly disposed of as waste.

High coercive fields prevalent in wurtzite ferroelectrics present a significant challenge, as they hinder efficient polarization switching, which is essential for microelectronic applications.

We have developed an aerosol sampling technique to enable collection of trace materials such as actinides in the atmosphere.

This invention presents technologies for characterizing physical properties of a sample's surface by combining image processing with machine learning techniques.

This invention introduces a system for microscopy called pan-sharpening, enabling the generation of images with both full-spatial and full-spectral resolution without needing to capture the entire dataset, significantly reducing data acquisition time.