Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Adam M Guss
- Isabelle Snyder
- Joseph Chapman
- Nicholas Peters
- Andrzej Nycz
- Biruk A Feyissa
- Carrie Eckert
- Emilio Piesciorovsky
- Hsuan-Hao Lu
- Joseph Lukens
- Josh Michener
- Kuntal De
- Muneer Alshowkan
- Udaya C Kalluri
- Vilmos Kertesz
- Xiaohan Yang
- Aaron Werth
- Aaron Wilson
- Adam Siekmann
- Alex Walters
- Ali Riza Ekti
- Anees Alnajjar
- Austin Carroll
- Brian Sanders
- Brian Williams
- Chris Masuo
- Clay Leach
- Daniel Jacobson
- Debjani Pal
- Elizabeth Piersall
- Eve Tsybina
- Gary Hahn
- Gerald Tuskan
- Ilenne Del Valle Kessra
- Isaiah Dishner
- Jay D Huenemann
- Jeff Foster
- Jerry Parks
- Joanna Tannous
- John F Cahill
- Kyle Davis
- Liangyu Qian
- Mariam Kiran
- Nandhini Ashok
- Nils Stenvig
- Ozgur Alaca
- Paul Abraham
- Raymond Borges Hink
- Serena Chen
- Subho Mukherjee
- Vincent Paquit
- Viswadeep Lebakula
- Vivek Sujan
- Yang Liu
- Yarom Polsky
- Yasemin Kaygusuz

Mechanism-Based Biological Inference via Multiplex Networks, AI Agents and Cross-Species Translation
This invention provides a platform that uses AI agents and biological networks to uncover and interpret disease-relevant biological mechanisms.

Here we present a solution for practically demonstrating path-aware routing and visualizing a self-driving network.

Technologies directed to polarization agnostic continuous variable quantum key distribution are described.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

By engineering the Serine Integrase Assisted Genome Engineering (SAGE) genetic toolkit in an industrial strain of Aspergillus niger, we have established its proof of principle for applicability in Eukaryotes.

The development of quantum networking requires architectures capable of dynamically reconfigurable entanglement distribution to meet diverse user needs and ensure tolerance against transmission disruptions.

Polarization drift in quantum networks is a major issue. Fiber transforms a transmitted signal’s polarization differently depending on its environment.

This invention addresses a key challenge in quantum communication networks by developing a controlled-NOT (CNOT) gate that operates between two degrees of freedom (DoFs) within a single photon: polarization and frequency.

We present a comprehensive muti-technique approach for systematic investigation of enzymes generated by wastewater Comamonas species with hitherto unknown functionality to wards the depolymerization of plastics into bioaccessible products for bacterial metabolism.

Faults in the power grid cause many problems that can result in catastrophic failures. Real-time fault detection in the power grid system is crucial to sustain the power systems' reliability, stability, and quality.

Polarization drift in quantum networks is a major issue. Fiber transforms a transmitted signal’s polarization differently depending on its environment.