Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate (21)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
- (-) Information Technology Services Directorate (2)
Researcher
- Singanallur Venkatakrishnan
- Srikanth Yoginath
- Amir K Ziabari
- Chad Steed
- James J Nutaro
- Junghoon Chae
- Philip Bingham
- Pratishtha Shukla
- Ryan Dehoff
- Sudip Seal
- Travis Humble
- Vincent Paquit
- Ali Passian
- Bryan Lim
- Diana E Hun
- Gina Accawi
- Gurneesh Jatana
- Harper Jordan
- Jason Jarnagin
- Joel Asiamah
- Joel Dawson
- Kevin Spakes
- Lilian V Swann
- Mark M Root
- Mark Provo II
- Michael Kirka
- Nance Ericson
- Obaid Rahman
- Pablo Moriano Salazar
- Peeyush Nandwana
- Philip Boudreaux
- Rangasayee Kannan
- Rob Root
- Sam Hollifield
- Samudra Dasgupta
- Tomas Grejtak
- Varisara Tansakul
- Yiyu Wang

ORNL researchers have developed a deep learning-based approach to rapidly perform high-quality reconstructions from sparse X-ray computed tomography measurements.

The ever-changing cellular communication landscape makes it difficult to identify, map, and localize commercial and private cellular base stations (PCBS).

We have been working to adapt background oriented schlieren (BOS) imaging to directly visualize building leakage, which is fast and easy.

A new nanostructured bainitic steel with accelerated kinetics for bainite formation at 200 C was designed using a coupled CALPHAD, machine learning, and data mining approach.

Digital twins (DTs) have emerged as essential tools for monitoring, predicting, and optimizing physical systems by using real-time data.

Simulation cloning is a technique in which dynamically cloned simulations’ state spaces differ from their parent simulation due to intervening events.

The QVis Quantum Device Circuit Optimization Module gives users the ability to map a circuit to a specific quantum devices based on the device specifications.

QVis is a visual analytics tool that helps uncover temporal and multivariate variations in noise properties of quantum devices.