Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Srikanth Yoginath
- Adam Willoughby
- Chad Steed
- James J Nutaro
- Junghoon Chae
- Pratishtha Shukla
- Rishi Pillai
- Sudip Seal
- Travis Humble
- Alex Roschli
- Ali Passian
- Brandon Johnston
- Bruce A Pint
- Bryan Lim
- Charles Hawkins
- Erin Webb
- Evin Carter
- Harper Jordan
- Jeremy Malmstead
- Jiheon Jun
- Joel Asiamah
- Joel Dawson
- Kitty K Mccracken
- Marie Romedenne
- Mengdawn Cheng
- Nance Ericson
- Oluwafemi Oyedeji
- Pablo Moriano Salazar
- Paula Cable-Dunlap
- Peeyush Nandwana
- Priyanshi Agrawal
- Rangasayee Kannan
- Samudra Dasgupta
- Soydan Ozcan
- Tomas Grejtak
- Tyler Smith
- Varisara Tansakul
- Xianhui Zhao
- Yiyu Wang
- Yong Chae Lim
- Zhili Feng

A novel method that prevents detachment of an optical fiber from a metal/alloy tube and allows strain measurement up to higher temperatures, about 800 C has been developed. Standard commercial adhesives typically only survive up to about 400 C.

A new nanostructured bainitic steel with accelerated kinetics for bainite formation at 200 C was designed using a coupled CALPHAD, machine learning, and data mining approach.

The use of biomass fiber reinforcement for polymer composite applications, like those in buildings or automotive, has expanded rapidly due to the low cost, high stiffness, and inherent renewability of these materials. Biomass are commonly disposed of as waste.

Test facilities to evaluate materials compatibility in hydrogen are abundant for high pressure and low temperature (<100C).

Digital twins (DTs) have emerged as essential tools for monitoring, predicting, and optimizing physical systems by using real-time data.

Simulation cloning is a technique in which dynamically cloned simulations’ state spaces differ from their parent simulation due to intervening events.

The QVis Quantum Device Circuit Optimization Module gives users the ability to map a circuit to a specific quantum devices based on the device specifications.

QVis is a visual analytics tool that helps uncover temporal and multivariate variations in noise properties of quantum devices.

We have developed an aerosol sampling technique to enable collection of trace materials such as actinides in the atmosphere.

The technologies provide a coating method to produce corrosion resistant and electrically conductive coating layer on metallic bipolar plates for hydrogen fuel cell and hydrogen electrolyzer applications.