Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Joseph Chapman
- Nicholas Peters
- Srikanth Yoginath
- Ying Yang
- Adam Willoughby
- Bruce A Pint
- Chad Steed
- Edgar Lara-Curzio
- Hsuan-Hao Lu
- James J Nutaro
- Joseph Lukens
- Junghoon Chae
- Muneer Alshowkan
- Pratishtha Shukla
- Rishi Pillai
- Steven J Zinkle
- Sudip Seal
- Travis Humble
- Yanli Wang
- Yutai Kato
- Alice Perrin
- Ali Passian
- Anees Alnajjar
- Ben Lamm
- Beth L Armstrong
- Bishnu Prasad Thapaliya
- Brandon Johnston
- Brian Williams
- Bryan Lim
- Charles Hawkins
- Christopher Ledford
- Eric Wolfe
- Frederic Vautard
- Harper Jordan
- Jiheon Jun
- Joel Asiamah
- Joel Dawson
- Mariam Kiran
- Marie Romedenne
- Meghan Lamm
- Michael Kirka
- Nance Ericson
- Nidia Gallego
- Pablo Moriano Salazar
- Patxi Fernandez-Zelaia
- Peeyush Nandwana
- Priyanshi Agrawal
- Rangasayee Kannan
- Ryan Dehoff
- Samudra Dasgupta
- Shajjad Chowdhury
- Tim Graening Seibert
- Tolga Aytug
- Tomas Grejtak
- Varisara Tansakul
- Weicheng Zhong
- Wei Tang
- Xiang Chen
- Yan-Ru Lin
- Yiyu Wang
- Yong Chae Lim
- Zhili Feng

Here we present a solution for practically demonstrating path-aware routing and visualizing a self-driving network.

Technologies directed to polarization agnostic continuous variable quantum key distribution are described.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

The development of quantum networking requires architectures capable of dynamically reconfigurable entanglement distribution to meet diverse user needs and ensure tolerance against transmission disruptions.

Polarization drift in quantum networks is a major issue. Fiber transforms a transmitted signal’s polarization differently depending on its environment.

V-Cr-Ti alloys have been proposed as candidate structural materials in fusion reactor blanket concepts with operation temperatures greater than that for reduced activation ferritic martensitic steels (RAFMs).

A novel method that prevents detachment of an optical fiber from a metal/alloy tube and allows strain measurement up to higher temperatures, about 800 C has been developed. Standard commercial adhesives typically only survive up to about 400 C.

This invention addresses a key challenge in quantum communication networks by developing a controlled-NOT (CNOT) gate that operates between two degrees of freedom (DoFs) within a single photon: polarization and frequency.

A new nanostructured bainitic steel with accelerated kinetics for bainite formation at 200 C was designed using a coupled CALPHAD, machine learning, and data mining approach.

With the ever-growing reliance on batteries, the need for the chemicals and materials to produce these batteries is also growing accordingly. One area of critical concern is the need for high quality graphite to ensure adequate energy storage capacity and battery stability.

Test facilities to evaluate materials compatibility in hydrogen are abundant for high pressure and low temperature (<100C).