Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Amit K Naskar
- Peeyush Nandwana
- Srikanth Yoginath
- Blane Fillingim
- Brian Post
- Chad Steed
- James J Nutaro
- Jaswinder Sharma
- Junghoon Chae
- Lauren Heinrich
- Logan Kearney
- Michael Toomey
- Nihal Kanbargi
- Pratishtha Shukla
- Sudarsanam Babu
- Sudip Seal
- Thomas Feldhausen
- Travis Humble
- Yousub Lee
- Alexander I Wiechert
- Ali Passian
- Arit Das
- Benjamin L Doughty
- Bryan Lim
- Christopher Bowland
- Costas Tsouris
- Debangshu Mukherjee
- Edgar Lara-Curzio
- Felix L Paulauskas
- Frederic Vautard
- Gs Jung
- Gyoung Gug Jang
- Harper Jordan
- Holly Humphrey
- Joel Asiamah
- Joel Dawson
- Md Inzamam Ul Haque
- Nance Ericson
- Olga S Ovchinnikova
- Pablo Moriano Salazar
- Radu Custelcean
- Ramanan Sankaran
- Rangasayee Kannan
- Robert E Norris Jr
- Samudra Dasgupta
- Santanu Roy
- Sumit Gupta
- Tomas Grejtak
- Uvinduni Premadasa
- Varisara Tansakul
- Vera Bocharova
- Vimal Ramanuj
- Wenjun Ge
- Yiyu Wang

Efficient thermal management in polymers is essential for developing lightweight, high-strength materials with multifunctional capabilities.

The disclosure is directed to optimized fiber geometries for use in carbon fiber reinforced polymers with increased compressive strength per unit cost. The disclosed fiber geometries reduce the material processing costs as well as increase the compressive strength.

A novel and cost-effective process for the activation of carbon fibers was established.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

Among the methods for point source carbon capture, the absorption of CO2 using aqueous amines (namely MEA) from the post-combustion gas stream is currently considered the most promising.

A new nanostructured bainitic steel with accelerated kinetics for bainite formation at 200 C was designed using a coupled CALPHAD, machine learning, and data mining approach.

Digital twins (DTs) have emerged as essential tools for monitoring, predicting, and optimizing physical systems by using real-time data.

Simulation cloning is a technique in which dynamically cloned simulations’ state spaces differ from their parent simulation due to intervening events.

The QVis Quantum Device Circuit Optimization Module gives users the ability to map a circuit to a specific quantum devices based on the device specifications.

QVis is a visual analytics tool that helps uncover temporal and multivariate variations in noise properties of quantum devices.

ORNL contributes to developing the concept of passive CO2 DAC by designing and testing a hybrid sorption system. This design aims to leverage the advantages of CO2 solubility and selectivity offered by materials with selective sorption of adsorbents.