Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate (229)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(138)
- User Facilities
(28)
Researcher
- Anees Alnajjar
- Kyle Kelley
- Rama K Vasudevan
- Nageswara Rao
- Rob Moore II
- Sergei V Kalinin
- Stephen Jesse
- An-Ping Li
- Andrew Lupini
- Anton Ievlev
- Benjamin Lawrie
- Bogdan Dryzhakov
- Chengyun Hua
- Craig A Bridges
- Gabor Halasz
- Hoyeon Jeon
- Huixin (anna) Jiang
- Jamieson Brechtl
- Jewook Park
- Jiaqiang Yan
- Kai Li
- Kashif Nawaz
- Kevin M Roccapriore
- Liam Collins
- Mariam Kiran
- Marti Checa Nualart
- Matthew Brahlek
- Maxim A Ziatdinov
- Neus Domingo Marimon
- Olga S Ovchinnikova
- Ondrej Dyck
- Petro Maksymovych
- Saban Hus
- Sheng Dai
- Steven Randolph
- Yongtao Liu

The eDICEML digital twin is proposed which emulates networks and hosts of an instrument-computing ecosystem. It runs natively on an ecosystem’s host or as a portable virtual machine.

Here we present a solution for practically demonstrating path-aware routing and visualizing a self-driving network.

The invention introduces a novel, customizable method to create, manipulate, and erase polar topological structures in ferroelectric materials using atomic force microscopy.

High coercive fields prevalent in wurtzite ferroelectrics present a significant challenge, as they hinder efficient polarization switching, which is essential for microelectronic applications.

Distortion in scanning tunneling microscope (STM) images is an unavoidable problem. This technology is an algorithm to identify and correct distorted wavefronts in atomic resolution STM images.

Electrochemistry synthesis and characterization testing typically occurs manually at a research facility.

When a magnetic field is applied to a type-II superconductor, it penetrates the superconductor in a thin cylindrical line known as a vortex line. Traditional methods to manipulate these vortices are limited in precision and affect a broad area.

Moisture management accounts for over 40% of the energy used by buildings. As such development of energy efficient and resilient dehumidification technologies are critical to decarbonize the building energy sector.

Molecular Beam Epitaxy is a traditional technique for the synthesis of thin film materials used in the semiconducting and microelectronics industry. In its essence, the MBE technique heats crucibles filled with ultra-pure atomic elements under ultra high vacuum condition