Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate
(35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Adam M Guss
- Ali Passian
- Hsuan-Hao Lu
- Joseph Lukens
- Nicholas Peters
- Alex Plotkowski
- Amit Shyam
- Joseph Chapman
- Muneer Alshowkan
- Peeyush Nandwana
- Srikanth Yoginath
- Adam Willoughby
- Andrzej Nycz
- Anees Alnajjar
- Blane Fillingim
- Brian Post
- Costas Tsouris
- Gs Jung
- Gyoung Gug Jang
- James A Haynes
- James J Nutaro
- Josh Michener
- Kuntal De
- Lauren Heinrich
- Pratishtha Shukla
- Radu Custelcean
- Rishi Pillai
- Sergiy Kalnaus
- Sudarsanam Babu
- Sudip Seal
- Sumit Bahl
- Thomas Feldhausen
- Udaya C Kalluri
- Xiaohan Yang
- Yousub Lee
- Aaron Werth
- Adam Siekmann
- Alexander I Wiechert
- Alex Miloshevsky
- Alex Walters
- Alice Perrin
- Amy Moore
- Andres Marquez Rossy
- Austin Carroll
- Beth L Armstrong
- Biruk A Feyissa
- Brandon Johnston
- Brandon Miller
- Brian Williams
- Bruce A Pint
- Carrie Eckert
- Charles Hawkins
- Chris Masuo
- Claire Marvinney
- Clay Leach
- Craig A Bridges
- Debangshu Mukherjee
- Debjani Pal
- Emilio Piesciorovsky
- Gary Hahn
- Georgios Polyzos
- Gerald Tuskan
- Gerry Knapp
- Harper Jordan
- Ilenne Del Valle Kessra
- Isaiah Dishner
- Jaswinder Sharma
- Jay D Huenemann
- Jeff Foster
- Jiheon Jun
- Joanna Tannous
- Joel Asiamah
- Joel Dawson
- John F Cahill
- Jong K Keum
- Jovid Rakhmonov
- Kyle Davis
- Liangyu Qian
- Mariam Kiran
- Marie Romedenne
- Md Inzamam Ul Haque
- Mina Yoon
- Nageswara Rao
- Nance Ericson
- Nancy Dudney
- Nicholas Richter
- Olga S Ovchinnikova
- Paul Abraham
- Priyanshi Agrawal
- Ramanan Sankaran
- Raymond Borges Hink
- Ryan Dehoff
- Serena Chen
- Sheng Dai
- Sunyong Kwon
- Varisara Tansakul
- Vilmos Kertesz
- Vimal Ramanuj
- Vincent Paquit
- Vivek Sujan
- Wenjun Ge
- Yang Liu
- Ying Yang
- Yong Chae Lim
- Zhili Feng

Here we present a solution for practically demonstrating path-aware routing and visualizing a self-driving network.

Technologies directed to polarization agnostic continuous variable quantum key distribution are described.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

By engineering the Serine Integrase Assisted Genome Engineering (SAGE) genetic toolkit in an industrial strain of Aspergillus niger, we have established its proof of principle for applicability in Eukaryotes.

Currently available cast Al alloys are not suitable for various high-performance conductor applications, such as rotor, inverter, windings, busbar, heat exchangers/sinks, etc.

The development of quantum networking requires architectures capable of dynamically reconfigurable entanglement distribution to meet diverse user needs and ensure tolerance against transmission disruptions.

The invented alloys are a new family of Al-Mg alloys. This new family of Al-based alloys demonstrate an excellent ductility (10 ± 2 % elongation) despite the high content of impurities commonly observed in recycled aluminum.

Polarization drift in quantum networks is a major issue. Fiber transforms a transmitted signal’s polarization differently depending on its environment.

Among the methods for point source carbon capture, the absorption of CO2 using aqueous amines (namely MEA) from the post-combustion gas stream is currently considered the most promising.

A novel method that prevents detachment of an optical fiber from a metal/alloy tube and allows strain measurement up to higher temperatures, about 800 C has been developed. Standard commercial adhesives typically only survive up to about 400 C.

This invention addresses a key challenge in quantum communication networks by developing a controlled-NOT (CNOT) gate that operates between two degrees of freedom (DoFs) within a single photon: polarization and frequency.