Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate
(35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Brian Post
- Ali Passian
- Peter Wang
- Rama K Vasudevan
- Amit Shyam
- Hsuan-Hao Lu
- Joseph Lukens
- Nicholas Peters
- Sergei V Kalinin
- Yongtao Liu
- Alex Plotkowski
- Andrzej Nycz
- Blane Fillingim
- Chris Masuo
- Joseph Chapman
- Kevin M Roccapriore
- Kyle Kelley
- Maxim A Ziatdinov
- Muneer Alshowkan
- Olga S Ovchinnikova
- Peeyush Nandwana
- Srikanth Yoginath
- Sudarsanam Babu
- Thomas Feldhausen
- Ahmed Hassen
- Anees Alnajjar
- Costas Tsouris
- Gs Jung
- Gyoung Gug Jang
- J.R. R Matheson
- James A Haynes
- James J Nutaro
- Joshua Vaughan
- Kashif Nawaz
- Lauren Heinrich
- Pratishtha Shukla
- Radu Custelcean
- Ryan Dehoff
- Sergiy Kalnaus
- Stephen Jesse
- Sudip Seal
- Sumit Bahl
- Yousub Lee
- Aaron Werth
- Adam Siekmann
- Adam Stevens
- Alexander I Wiechert
- Alex Miloshevsky
- Alex Roschli
- Alice Perrin
- Amy Moore
- An-Ping Li
- Andres Marquez Rossy
- Andrew Lupini
- Anton Ievlev
- Arpan Biswas
- Beth L Armstrong
- Bogdan Dryzhakov
- Brandon Miller
- Brian Fricke
- Brian Gibson
- Brian Williams
- Cameron Adkins
- Christopher Fancher
- Christopher Rouleau
- Chris Tyler
- Claire Marvinney
- Craig A Bridges
- Craig Blue
- David Olvera Trejo
- Debangshu Mukherjee
- Emilio Piesciorovsky
- Gary Hahn
- Georgios Polyzos
- Gerd Duscher
- Gerry Knapp
- Gordon Robertson
- Harper Jordan
- Hoyeon Jeon
- Huixin (anna) Jiang
- Ilia N Ivanov
- Isha Bhandari
- Ivan Vlassiouk
- Jamieson Brechtl
- Jaswinder Sharma
- Jay Reynolds
- Jeff Brookins
- Jesse Heineman
- Jewook Park
- Joel Asiamah
- Joel Dawson
- John Lindahl
- John Potter
- Jong K Keum
- Jovid Rakhmonov
- Kai Li
- Kyle Gluesenkamp
- Liam Collins
- Liam White
- Luke Meyer
- Mahshid Ahmadi-Kalinina
- Mariam Kiran
- Marti Checa Nualart
- Md Inzamam Ul Haque
- Michael Borish
- Mina Yoon
- Nageswara Rao
- Nance Ericson
- Nancy Dudney
- Neus Domingo Marimon
- Nicholas Richter
- Nickolay Lavrik
- Ondrej Dyck
- Ramanan Sankaran
- Rangasayee Kannan
- Raymond Borges Hink
- Ritin Mathews
- Roger G Miller
- Saban Hus
- Sai Mani Prudhvi Valleti
- Sarah Graham
- Scott Smith
- Sheng Dai
- Steven Guzorek
- Steven Randolph
- Sumner Harris
- Sunyong Kwon
- Utkarsh Pratiush
- Varisara Tansakul
- Vimal Ramanuj
- Vivek Sujan
- Vlastimil Kunc
- Wenjun Ge
- William Carter
- William Peter
- Ying Yang
- Yukinori Yamamoto
- Zhiming Gao

Dual-GP addresses limitations in traditional GPBO-driven autonomous experimentation by incorporating an additional surrogate observer and allowing human oversight, this technique improves optimization efficiency via data quality assessment and adaptability to unanticipated exp

Here we present a solution for practically demonstrating path-aware routing and visualizing a self-driving network.

Technologies directed to polarization agnostic continuous variable quantum key distribution are described.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

Currently available cast Al alloys are not suitable for various high-performance conductor applications, such as rotor, inverter, windings, busbar, heat exchangers/sinks, etc.

The development of quantum networking requires architectures capable of dynamically reconfigurable entanglement distribution to meet diverse user needs and ensure tolerance against transmission disruptions.

The invented alloys are a new family of Al-Mg alloys. This new family of Al-based alloys demonstrate an excellent ductility (10 ± 2 % elongation) despite the high content of impurities commonly observed in recycled aluminum.

This manufacturing method uses multifunctional materials distributed volumetrically to generate a stiffness-based architecture, where continuous surfaces can be created from flat, rapidly produced geometries.

Polarization drift in quantum networks is a major issue. Fiber transforms a transmitted signal’s polarization differently depending on its environment.

Among the methods for point source carbon capture, the absorption of CO2 using aqueous amines (namely MEA) from the post-combustion gas stream is currently considered the most promising.

The lack of real-time insights into how materials evolve during laser powder bed fusion has limited the adoption by inhibiting part qualification. The developed approach provides key data needed to fabricate born qualified parts.