Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate
(35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Brian Post
- Ali Passian
- Peter Wang
- Amit Shyam
- Hsuan-Hao Lu
- Joseph Lukens
- Nicholas Peters
- Alex Plotkowski
- Andrzej Nycz
- Blane Fillingim
- Chris Masuo
- Joseph Chapman
- Muneer Alshowkan
- Peeyush Nandwana
- Srikanth Yoginath
- Sudarsanam Babu
- Thomas Feldhausen
- Ying Yang
- Ahmed Hassen
- Anees Alnajjar
- Costas Tsouris
- Edgar Lara-Curzio
- Gs Jung
- Gyoung Gug Jang
- J.R. R Matheson
- James A Haynes
- James J Nutaro
- Joshua Vaughan
- Lauren Heinrich
- Pratishtha Shukla
- Radu Custelcean
- Ryan Dehoff
- Sergiy Kalnaus
- Steven J Zinkle
- Sudip Seal
- Sumit Bahl
- Yanli Wang
- Yousub Lee
- Yutai Kato
- Aaron Werth
- Adam Siekmann
- Adam Stevens
- Adam Willoughby
- Alexander I Wiechert
- Alex Miloshevsky
- Alex Roschli
- Alice Perrin
- Amy Moore
- Andres Marquez Rossy
- Beth L Armstrong
- Bishnu Prasad Thapaliya
- Brandon Johnston
- Brandon Miller
- Brian Gibson
- Brian Williams
- Bruce A Pint
- Cameron Adkins
- Charles Hawkins
- Christopher Fancher
- Chris Tyler
- Claire Marvinney
- Craig A Bridges
- Craig Blue
- David Olvera Trejo
- Debangshu Mukherjee
- Emilio Piesciorovsky
- Eric Wolfe
- Frederic Vautard
- Gary Hahn
- Georgios Polyzos
- Gerry Knapp
- Gordon Robertson
- Harper Jordan
- Isha Bhandari
- Jaswinder Sharma
- Jay Reynolds
- Jeff Brookins
- Jesse Heineman
- Joel Asiamah
- Joel Dawson
- John Lindahl
- John Potter
- Jong K Keum
- Jovid Rakhmonov
- Liam White
- Luke Meyer
- Mariam Kiran
- Marie Romedenne
- Md Inzamam Ul Haque
- Michael Borish
- Mina Yoon
- Nageswara Rao
- Nance Ericson
- Nancy Dudney
- Nicholas Richter
- Nidia Gallego
- Olga S Ovchinnikova
- Ramanan Sankaran
- Rangasayee Kannan
- Raymond Borges Hink
- Rishi Pillai
- Ritin Mathews
- Roger G Miller
- Sarah Graham
- Scott Smith
- Sheng Dai
- Steven Guzorek
- Sunyong Kwon
- Tim Graening Seibert
- Varisara Tansakul
- Vimal Ramanuj
- Vivek Sujan
- Vlastimil Kunc
- Weicheng Zhong
- Wei Tang
- Wenjun Ge
- William Carter
- William Peter
- Xiang Chen
- Yukinori Yamamoto

Here we present a solution for practically demonstrating path-aware routing and visualizing a self-driving network.

Technologies directed to polarization agnostic continuous variable quantum key distribution are described.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

Currently available cast Al alloys are not suitable for various high-performance conductor applications, such as rotor, inverter, windings, busbar, heat exchangers/sinks, etc.

The development of quantum networking requires architectures capable of dynamically reconfigurable entanglement distribution to meet diverse user needs and ensure tolerance against transmission disruptions.

The invented alloys are a new family of Al-Mg alloys. This new family of Al-based alloys demonstrate an excellent ductility (10 ± 2 % elongation) despite the high content of impurities commonly observed in recycled aluminum.

This manufacturing method uses multifunctional materials distributed volumetrically to generate a stiffness-based architecture, where continuous surfaces can be created from flat, rapidly produced geometries.

Polarization drift in quantum networks is a major issue. Fiber transforms a transmitted signal’s polarization differently depending on its environment.

Among the methods for point source carbon capture, the absorption of CO2 using aqueous amines (namely MEA) from the post-combustion gas stream is currently considered the most promising.

V-Cr-Ti alloys have been proposed as candidate structural materials in fusion reactor blanket concepts with operation temperatures greater than that for reduced activation ferritic martensitic steels (RAFMs).

The lack of real-time insights into how materials evolve during laser powder bed fusion has limited the adoption by inhibiting part qualification. The developed approach provides key data needed to fabricate born qualified parts.