Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate
(35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Ahmed Hassen
- Vlastimil Kunc
- Steven Guzorek
- Ali Passian
- Brian Post
- Hsuan-Hao Lu
- Joseph Lukens
- Nicholas Peters
- Vipin Kumar
- Alex Plotkowski
- Amit K Naskar
- Amit Shyam
- David Nuttall
- Jaswinder Sharma
- Joseph Chapman
- Muneer Alshowkan
- Peeyush Nandwana
- Soydan Ozcan
- Srikanth Yoginath
- Sudarsanam Babu
- Thomas Feldhausen
- Anees Alnajjar
- Blane Fillingim
- Costas Tsouris
- Dan Coughlin
- Gs Jung
- Gyoung Gug Jang
- James A Haynes
- James J Nutaro
- Jim Tobin
- Lauren Heinrich
- Logan Kearney
- Michael Toomey
- Nihal Kanbargi
- Pratishtha Shukla
- Pum Kim
- Radu Custelcean
- Segun Isaac Talabi
- Sergiy Kalnaus
- Sudip Seal
- Sumit Bahl
- Tyler Smith
- Uday Vaidya
- Umesh N MARATHE
- Yousub Lee
- Aaron Werth
- Adam Siekmann
- Adam Stevens
- Alexander I Wiechert
- Alex Miloshevsky
- Alex Roschli
- Alice Perrin
- Amy Moore
- Andres Marquez Rossy
- Arit Das
- Benjamin L Doughty
- Beth L Armstrong
- Brandon Miller
- Brian Williams
- Brittany Rodriguez
- Christopher Bowland
- Claire Marvinney
- Craig A Bridges
- Craig Blue
- Debangshu Mukherjee
- Edgar Lara-Curzio
- Emilio Piesciorovsky
- Erin Webb
- Evin Carter
- Felix L Paulauskas
- Frederic Vautard
- Gary Hahn
- Georges Chahine
- Georgios Polyzos
- Gerry Knapp
- Halil Tekinalp
- Harper Jordan
- Holly Humphrey
- Jeremy Malmstead
- Joel Asiamah
- Joel Dawson
- John Lindahl
- Jong K Keum
- Josh Crabtree
- Jovid Rakhmonov
- Julian Charron
- Katie Copenhaver
- Kim Sitzlar
- Kitty K Mccracken
- Komal Chawla
- Mariam Kiran
- Md Inzamam Ul Haque
- Merlin Theodore
- Mina Yoon
- Nadim Hmeidat
- Nageswara Rao
- Nance Ericson
- Nancy Dudney
- Nicholas Richter
- Olga S Ovchinnikova
- Oluwafemi Oyedeji
- Ramanan Sankaran
- Raymond Borges Hink
- Robert E Norris Jr
- Ryan Dehoff
- Ryan Ogle
- Sana Elyas
- Santanu Roy
- Sheng Dai
- Steve Bullock
- Subhabrata Saha
- Sumit Gupta
- Sunyong Kwon
- Uvinduni Premadasa
- Varisara Tansakul
- Vera Bocharova
- Vimal Ramanuj
- Vivek Sujan
- Wenjun Ge
- Xianhui Zhao
- Ying Yang

Efficient thermal management in polymers is essential for developing lightweight, high-strength materials with multifunctional capabilities.

The disclosure is directed to optimized fiber geometries for use in carbon fiber reinforced polymers with increased compressive strength per unit cost. The disclosed fiber geometries reduce the material processing costs as well as increase the compressive strength.

Here we present a solution for practically demonstrating path-aware routing and visualizing a self-driving network.

Technologies directed to polarization agnostic continuous variable quantum key distribution are described.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

Currently available cast Al alloys are not suitable for various high-performance conductor applications, such as rotor, inverter, windings, busbar, heat exchangers/sinks, etc.

The development of quantum networking requires architectures capable of dynamically reconfigurable entanglement distribution to meet diverse user needs and ensure tolerance against transmission disruptions.

The invented alloys are a new family of Al-Mg alloys. This new family of Al-based alloys demonstrate an excellent ductility (10 ± 2 % elongation) despite the high content of impurities commonly observed in recycled aluminum.

This manufacturing method uses multifunctional materials distributed volumetrically to generate a stiffness-based architecture, where continuous surfaces can be created from flat, rapidly produced geometries.

Through utilizing a two function splice we can increase the splice strength for opposing tows.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

A novel and cost-effective process for the activation of carbon fibers was established.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.