Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate
(35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Corson Cramer
- Steve Bullock
- Adam M Guss
- Ali Passian
- Hsuan-Hao Lu
- Joseph Lukens
- Nicholas Peters
- Alex Plotkowski
- Amit Shyam
- Greg Larsen
- James Klett
- Joseph Chapman
- Muneer Alshowkan
- Peeyush Nandwana
- Srikanth Yoginath
- Trevor Aguirre
- Anees Alnajjar
- Beth L Armstrong
- Blane Fillingim
- Brian Post
- Costas Tsouris
- Gs Jung
- Gyoung Gug Jang
- James A Haynes
- James J Nutaro
- Josh Michener
- Lauren Heinrich
- Pratishtha Shukla
- Radu Custelcean
- Sergiy Kalnaus
- Sudarsanam Babu
- Sudip Seal
- Sumit Bahl
- Thomas Feldhausen
- Vlastimil Kunc
- Xiaohan Yang
- Yousub Lee
- Aaron Werth
- Adam Siekmann
- Ahmed Hassen
- Alexander I Wiechert
- Alex Miloshevsky
- Alex Walters
- Alice Perrin
- Amy Moore
- Andres Marquez Rossy
- Andrzej Nycz
- Austin Carroll
- Brandon Miller
- Brian Williams
- Carrie Eckert
- Charlie Cook
- Christopher Hershey
- Christopher Ledford
- Claire Marvinney
- Clay Leach
- Craig A Bridges
- Craig Blue
- Daniel Rasmussen
- David J Mitchell
- Debangshu Mukherjee
- Dustin Gilmer
- Emilio Piesciorovsky
- Gary Hahn
- Georgios Polyzos
- Gerald Tuskan
- Gerry Knapp
- Harper Jordan
- Ilenne Del Valle Kessra
- Isaiah Dishner
- Jaswinder Sharma
- Jay D Huenemann
- Jeff Foster
- Joanna Tannous
- Joel Asiamah
- Joel Dawson
- John F Cahill
- John Lindahl
- Jong K Keum
- Jordan Wright
- Jovid Rakhmonov
- Kyle Davis
- Liangyu Qian
- Mariam Kiran
- Md Inzamam Ul Haque
- Michael Kirka
- Mina Yoon
- Nadim Hmeidat
- Nageswara Rao
- Nance Ericson
- Nancy Dudney
- Nicholas Richter
- Olga S Ovchinnikova
- Paul Abraham
- Ramanan Sankaran
- Raymond Borges Hink
- Ryan Dehoff
- Sana Elyas
- Serena Chen
- Sheng Dai
- Steven Guzorek
- Sunyong Kwon
- Tomonori Saito
- Tony Beard
- Udaya C Kalluri
- Varisara Tansakul
- Vilmos Kertesz
- Vimal Ramanuj
- Vincent Paquit
- Vivek Sujan
- Wenjun Ge
- Yang Liu
- Ying Yang

Here we present a solution for practically demonstrating path-aware routing and visualizing a self-driving network.

Technologies directed to polarization agnostic continuous variable quantum key distribution are described.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

By engineering the Serine Integrase Assisted Genome Engineering (SAGE) genetic toolkit in an industrial strain of Aspergillus niger, we have established its proof of principle for applicability in Eukaryotes.

Currently available cast Al alloys are not suitable for various high-performance conductor applications, such as rotor, inverter, windings, busbar, heat exchangers/sinks, etc.

The development of quantum networking requires architectures capable of dynamically reconfigurable entanglement distribution to meet diverse user needs and ensure tolerance against transmission disruptions.

The invented alloys are a new family of Al-Mg alloys. This new family of Al-based alloys demonstrate an excellent ductility (10 ± 2 % elongation) despite the high content of impurities commonly observed in recycled aluminum.

The technologies provide additively manufactured thermal protection system.

Polarization drift in quantum networks is a major issue. Fiber transforms a transmitted signal’s polarization differently depending on its environment.

Among the methods for point source carbon capture, the absorption of CO2 using aqueous amines (namely MEA) from the post-combustion gas stream is currently considered the most promising.

This invention addresses a key challenge in quantum communication networks by developing a controlled-NOT (CNOT) gate that operates between two degrees of freedom (DoFs) within a single photon: polarization and frequency.