Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate
(35)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Ilias Belharouak
- Ali Passian
- Hsuan-Hao Lu
- Jaswinder Sharma
- Joseph Lukens
- Nicholas Peters
- Alex Plotkowski
- Amit K Naskar
- Amit Shyam
- Joseph Chapman
- Muneer Alshowkan
- Peeyush Nandwana
- Srikanth Yoginath
- Alexey Serov
- Ali Abouimrane
- Anees Alnajjar
- Beth L Armstrong
- Blane Fillingim
- Brian Post
- Costas Tsouris
- Georgios Polyzos
- Gs Jung
- Gyoung Gug Jang
- James A Haynes
- James J Nutaro
- Lauren Heinrich
- Logan Kearney
- Marm Dixit
- Michael Toomey
- Nance Ericson
- Nihal Kanbargi
- Pratishtha Shukla
- Radu Custelcean
- Ruhul Amin
- Sergiy Kalnaus
- Sudarsanam Babu
- Sudip Seal
- Sumit Bahl
- Thomas Feldhausen
- Xiang Lyu
- Yousub Lee
- Aaron Werth
- Adam Siekmann
- Alexander I Wiechert
- Alex Miloshevsky
- Alice Perrin
- Amy Moore
- Andres Marquez Rossy
- Arit Das
- Benjamin L Doughty
- Ben LaRiviere
- Brandon Miller
- Brian Williams
- Christopher Bowland
- Claire Marvinney
- Craig A Bridges
- David L Wood III
- Debangshu Mukherjee
- Edgar Lara-Curzio
- Emilio Piesciorovsky
- Felix L Paulauskas
- Frederic Vautard
- Gabriel Veith
- Gary Hahn
- Gerry Knapp
- Harper Jordan
- Holly Humphrey
- Hongbin Sun
- James Szybist
- Joel Asiamah
- Joel Dawson
- Jonathan Willocks
- Jong K Keum
- Jovid Rakhmonov
- Junbin Choi
- Khryslyn G Araño
- Lu Yu
- Mariam Kiran
- Md Inzamam Ul Haque
- Meghan Lamm
- Michelle Lehmann
- Mina Yoon
- Nageswara Rao
- Nancy Dudney
- Nicholas Richter
- Olga S Ovchinnikova
- Paul Groth
- Pradeep Ramuhalli
- Ramanan Sankaran
- Raymond Borges Hink
- Ritu Sahore
- Robert E Norris Jr
- Ryan Dehoff
- Santanu Roy
- Sheng Dai
- Sumit Gupta
- Sunyong Kwon
- Todd Toops
- Uvinduni Premadasa
- Varisara Tansakul
- Vera Bocharova
- Vimal Ramanuj
- Vivek Sujan
- Wenjun Ge
- Yaocai Bai
- Ying Yang
- Zhijia Du

Efficient thermal management in polymers is essential for developing lightweight, high-strength materials with multifunctional capabilities.

The disclosure is directed to optimized fiber geometries for use in carbon fiber reinforced polymers with increased compressive strength per unit cost. The disclosed fiber geometries reduce the material processing costs as well as increase the compressive strength.

Here we present a solution for practically demonstrating path-aware routing and visualizing a self-driving network.

Technologies directed to polarization agnostic continuous variable quantum key distribution are described.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

Currently available cast Al alloys are not suitable for various high-performance conductor applications, such as rotor, inverter, windings, busbar, heat exchangers/sinks, etc.

The development of quantum networking requires architectures capable of dynamically reconfigurable entanglement distribution to meet diverse user needs and ensure tolerance against transmission disruptions.

The invented alloys are a new family of Al-Mg alloys. This new family of Al-based alloys demonstrate an excellent ductility (10 ± 2 % elongation) despite the high content of impurities commonly observed in recycled aluminum.

A novel and cost-effective process for the activation of carbon fibers was established.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

Polarization drift in quantum networks is a major issue. Fiber transforms a transmitted signal’s polarization differently depending on its environment.

Among the methods for point source carbon capture, the absorption of CO2 using aqueous amines (namely MEA) from the post-combustion gas stream is currently considered the most promising.