Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate
(35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Andrzej Nycz
- Ali Passian
- Chris Masuo
- Amit Shyam
- Hsuan-Hao Lu
- Joseph Lukens
- Nicholas Peters
- Peter Wang
- Alex Plotkowski
- Alex Walters
- Beth L Armstrong
- Gabriel Veith
- Guang Yang
- Joseph Chapman
- Lawrence {Larry} M Anovitz
- Michelle Lehmann
- Muneer Alshowkan
- Peeyush Nandwana
- Srikanth Yoginath
- Tomonori Saito
- Anees Alnajjar
- Blane Fillingim
- Brian Gibson
- Brian Post
- Costas Tsouris
- Ethan Self
- Gs Jung
- Gyoung Gug Jang
- James A Haynes
- James J Nutaro
- Jaswinder Sharma
- Joshua Vaughan
- Lauren Heinrich
- Luke Meyer
- Pratishtha Shukla
- Radu Custelcean
- Robert Sacci
- Sergiy Kalnaus
- Sudarsanam Babu
- Sudip Seal
- Sumit Bahl
- Thomas Feldhausen
- Udaya C Kalluri
- William Carter
- Yousub Lee
- Aaron Werth
- Adam Siekmann
- Akash Jag Prasad
- Alexander I Wiechert
- Alexey Serov
- Alex Miloshevsky
- Alice Perrin
- Amanda Musgrove
- Amit K Naskar
- Amy Moore
- Andres Marquez Rossy
- Andrew G Stack
- Anisur Rahman
- Anna M Mills
- Brandon Miller
- Brian Williams
- Calen Kimmell
- Chanho Kim
- Chelo Chavez
- Christopher Fancher
- Chris Tyler
- Claire Marvinney
- Clay Leach
- Craig A Bridges
- Debangshu Mukherjee
- Emilio Piesciorovsky
- Felipe Polo Garzon
- Gary Hahn
- Georgios Polyzos
- Gerry Knapp
- Gordon Robertson
- Harper Jordan
- Ilias Belharouak
- J.R. R Matheson
- Jaydeep Karandikar
- Jay Reynolds
- Jeff Brookins
- Jesse Heineman
- Joel Asiamah
- Joel Dawson
- John Potter
- Jong K Keum
- Jovid Rakhmonov
- Juliane Weber
- Jun Yang
- Junyan Zhang
- Khryslyn G Araño
- Logan Kearney
- Mariam Kiran
- Matthew S Chambers
- Md Inzamam Ul Haque
- Michael Toomey
- Mina Yoon
- Nageswara Rao
- Nance Ericson
- Nancy Dudney
- Nicholas Richter
- Nihal Kanbargi
- Olga S Ovchinnikova
- Peng Yang
- Ramanan Sankaran
- Raymond Borges Hink
- Riley Wallace
- Ritin Mathews
- Ryan Dehoff
- Sai Krishna Reddy Adapa
- Sheng Dai
- Sunyong Kwon
- Varisara Tansakul
- Vera Bocharova
- Vimal Ramanuj
- Vincent Paquit
- Vivek Sujan
- Vladimir Orlyanchik
- Wenjun Ge
- Xiang Lyu
- Xiaohan Yang
- Ying Yang

This invention utilizes a custom-synthesized vinyl trifluoromethanesulfonimide (VTFSI) salt and an alcohol containing small molecule or polymer for the synthesis of novel single-ion conducting polymer electrolytes for the use in Li-ion and beyond Li-ion batteries, fuel cells,

Here we present a solution for practically demonstrating path-aware routing and visualizing a self-driving network.

Technologies directed to polarization agnostic continuous variable quantum key distribution are described.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

CO2 capture by mineral looping, either using calcium or magnesium precursors requires that the materials be calcined after CO2 is captured from the atmosphere. This separates the CO2 for later sequestration and returned the starting material to its original state.

Currently available cast Al alloys are not suitable for various high-performance conductor applications, such as rotor, inverter, windings, busbar, heat exchangers/sinks, etc.

The development of quantum networking requires architectures capable of dynamically reconfigurable entanglement distribution to meet diverse user needs and ensure tolerance against transmission disruptions.

The invented alloys are a new family of Al-Mg alloys. This new family of Al-based alloys demonstrate an excellent ductility (10 ± 2 % elongation) despite the high content of impurities commonly observed in recycled aluminum.

System and method for part porosity monitoring of additively manufactured components using machining
In additive manufacturing, choice of process parameters for a given material and geometry can result in porosities in the build volume, which can result in scrap.

Polarization drift in quantum networks is a major issue. Fiber transforms a transmitted signal’s polarization differently depending on its environment.

This is a novel approach to enhance the performance and durability of all-solid-state batteries (ASSBs) by focusing on two primary components: the Si anode and the thin electrolyte integration.