Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Energy Science and Technology Directorate (229)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(138)
- User Facilities (28)
- (-) Computing and Computational Sciences Directorate (39)
Researcher
- Sheng Dai
- Ali Passian
- Amit Shyam
- Beth L Armstrong
- Parans Paranthaman
- Peeyush Nandwana
- Bishnu Prasad Thapaliya
- Hsuan-Hao Lu
- Joseph Lukens
- Nicholas Peters
- Ying Yang
- Zhenzhen Yang
- Zhili Feng
- Alex Plotkowski
- Anees Alnajjar
- Brian Post
- Craig A Bridges
- Edgar Lara-Curzio
- Jian Chen
- Joseph Chapman
- Jun Qu
- Muneer Alshowkan
- Rangasayee Kannan
- Ryan Dehoff
- Shannon M Mahurin
- Srikanth Yoginath
- Sudarsanam Babu
- Yong Chae Lim
- Adam Willoughby
- Alice Perrin
- Blane Fillingim
- Bruce A Pint
- Chad Steed
- Christopher Ledford
- Corson Cramer
- Costas Tsouris
- David S Parker
- Eric Wolfe
- Gs Jung
- Gyoung Gug Jang
- Ilja Popovs
- James A Haynes
- James J Nutaro
- Junghoon Chae
- Lauren Heinrich
- Li-Qi Qiu
- Meghan Lamm
- Michael Kirka
- Nageswara Rao
- Pratishtha Shukla
- Radu Custelcean
- Rishi Pillai
- Rob Moore II
- Saurabh Prakash Pethe
- Sergiy Kalnaus
- Steve Bullock
- Steven J Zinkle
- Sudip Seal
- Sumit Bahl
- Thomas Feldhausen
- Tolga Aytug
- Tomas Grejtak
- Travis Humble
- Uday Vaidya
- Wei Zhang
- Yanli Wang
- Yousub Lee
- Yutai Kato
- Aaron Werth
- Adam Siekmann
- Adam Stevens
- Ahmed Hassen
- Alexander I Wiechert
- Alexei P Sokolov
- Alex Miloshevsky
- Amy Moore
- Andres Marquez Rossy
- Andrew F May
- Annetta Burger
- Ben Garrison
- Benjamin Lawrie
- Ben Lamm
- Brad Johnson
- Brandon Johnston
- Brandon Miller
- Brian Sales
- Brian Williams
- Bruce Moyer
- Bryan Lim
- Carter Christopher
- Chance C Brown
- Charles Hawkins
- Chengyun Hua
- Christopher Fancher
- Claire Marvinney
- Dali Wang
- David J Mitchell
- Dean T Pierce
- Debangshu Mukherjee
- Debraj De
- Emilio Piesciorovsky
- Ethan Self
- Femi Omitaomu
- Frederic Vautard
- Gabor Halasz
- Gabriel Veith
- Gary Hahn
- Gautam Malviya Thakur
- Georgios Polyzos
- Gerry Knapp
- Glenn R Romanoski
- Gordon Robertson
- Govindarajan Muralidharan
- Haowen Xu
- Harper Jordan
- Hsin Wang
- James Gaboardi
- James Klett
- Jaswinder Sharma
- Jayanthi Kumar
- Jay Reynolds
- Jeff Brookins
- Jesse McGaha
- Jiaqiang Yan
- Jiheon Jun
- Joel Asiamah
- Joel Dawson
- Jong K Keum
- Jordan Wright
- Josh Michener
- Jovid Rakhmonov
- Kaustubh Mungale
- Kevin Sparks
- Khryslyn G Araño
- Liangyu Qian
- Liz McBride
- Mariam Kiran
- Marie Romedenne
- Marm Dixit
- Matthew Brahlek
- Matthew S Chambers
- Md Inzamam Ul Haque
- Mike Zach
- Mina Yoon
- Nance Ericson
- Nancy Dudney
- Nedim Cinbiz
- Nicholas Richter
- Nidia Gallego
- Olga S Ovchinnikova
- Pablo Moriano Salazar
- Patxi Fernandez-Zelaia
- Peter Wang
- Petro Maksymovych
- Phillip Halstenberg
- Priyanshi Agrawal
- Ramanan Sankaran
- Raymond Borges Hink
- Roger G Miller
- Rose Montgomery
- Samudra Dasgupta
- Santa Jansone-Popova
- Sarah Graham
- Serena Chen
- Shajjad Chowdhury
- Subhamay Pramanik
- Sunyong Kwon
- Tao Hong
- Thomas R Muth
- Tim Graening Seibert
- Todd Thomas
- Tomonori Saito
- Trevor Aguirre
- Varisara Tansakul
- Venugopal K Varma
- Vimal Ramanuj
- Vivek Sujan
- Vlastimil Kunc
- Weicheng Zhong
- Wei Tang
- Wenjun Ge
- William Peter
- Xiang Chen
- Xiuling Nie
- Yan-Ru Lin
- Yiyu Wang
- Yukinori Yamamoto

The eDICEML digital twin is proposed which emulates networks and hosts of an instrument-computing ecosystem. It runs natively on an ecosystem’s host or as a portable virtual machine.

Often there are major challenges in developing diverse and complex human mobility metrics systematically and quickly.

Here we present a solution for practically demonstrating path-aware routing and visualizing a self-driving network.

We tested 48 diverse homologs of SfaB and identified several enzyme variants that were more active than SfaB at synthesizing the nylon-6,6 monomer.

A finite element approach integrated with a novel constitute model to predict phase change, residual stresses and part deformation.

Technologies directed to polarization agnostic continuous variable quantum key distribution are described.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

A novel strategy was developed to solve the limitations of the current sorbent systems in CO2 chemisorption in terms of energy consumption in CO2 release and improved CO2 uptake capacity.

Currently available cast Al alloys are not suitable for various high-performance conductor applications, such as rotor, inverter, windings, busbar, heat exchangers/sinks, etc.

The development of quantum networking requires architectures capable of dynamically reconfigurable entanglement distribution to meet diverse user needs and ensure tolerance against transmission disruptions.

The invented alloys are a new family of Al-Mg alloys. This new family of Al-based alloys demonstrate an excellent ductility (10 ± 2 % elongation) despite the high content of impurities commonly observed in recycled aluminum.