Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
- (-) Computing and Computational Sciences Directorate (35)
Researcher
- Ali Passian
- Hsuan-Hao Lu
- Joseph Lukens
- Nicholas Peters
- Peeyush Nandwana
- Alex Plotkowski
- Amit Shyam
- Bo Shen
- Joseph Chapman
- Muneer Alshowkan
- Praveen Cheekatamarla
- Ryan Dehoff
- Singanallur Venkatakrishnan
- Srikanth Yoginath
- Vishaldeep Sharma
- Amir K Ziabari
- Anees Alnajjar
- Blane Fillingim
- Brian Post
- Chad Steed
- Costas Tsouris
- Diana E Hun
- Gs Jung
- Gyoung Gug Jang
- James A Haynes
- James J Nutaro
- James Manley
- Junghoon Chae
- Kyle Gluesenkamp
- Lauren Heinrich
- Philip Bingham
- Philip Boudreaux
- Pratishtha Shukla
- Radu Custelcean
- Sergiy Kalnaus
- Stephen M Killough
- Sudarsanam Babu
- Sudip Seal
- Sumit Bahl
- Thomas Feldhausen
- Travis Humble
- Vincent Paquit
- Yousub Lee
- Aaron Werth
- Adam Siekmann
- Alexander I Wiechert
- Alex Miloshevsky
- Alice Perrin
- Amy Moore
- Andres Marquez Rossy
- Beth L Armstrong
- Brandon Miller
- Brian Williams
- Bryan Lim
- Bryan Maldonado Puente
- Claire Marvinney
- Corey Cooke
- Craig A Bridges
- Debangshu Mukherjee
- Easwaran Krishnan
- Emilio Piesciorovsky
- Gary Hahn
- Georgios Polyzos
- Gerry Knapp
- Gina Accawi
- Gurneesh Jatana
- Harper Jordan
- Hongbin Sun
- Jamieson Brechtl
- Jaswinder Sharma
- Joel Asiamah
- Joel Dawson
- Joe Rendall
- Jong K Keum
- Jovid Rakhmonov
- Kashif Nawaz
- Mariam Kiran
- Mark M Root
- Md Inzamam Ul Haque
- Melanie Moses-DeBusk Debusk
- Michael Kirka
- Mina Yoon
- Muneeshwaran Murugan
- Nageswara Rao
- Nance Ericson
- Nancy Dudney
- Nicholas Richter
- Nolan Hayes
- Obaid Rahman
- Olga S Ovchinnikova
- Pablo Moriano Salazar
- Peter Wang
- Ramanan Sankaran
- Rangasayee Kannan
- Raymond Borges Hink
- Ryan Kerekes
- Sally Ghanem
- Samudra Dasgupta
- Sheng Dai
- Sunyong Kwon
- Tomas Grejtak
- Varisara Tansakul
- Vimal Ramanuj
- Vivek Sujan
- Wenjun Ge
- Yifeng Hu
- Ying Yang
- Yiyu Wang

ORNL researchers have developed a deep learning-based approach to rapidly perform high-quality reconstructions from sparse X-ray computed tomography measurements.

Here we present a solution for practically demonstrating path-aware routing and visualizing a self-driving network.

Technologies directed to polarization agnostic continuous variable quantum key distribution are described.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

Currently available cast Al alloys are not suitable for various high-performance conductor applications, such as rotor, inverter, windings, busbar, heat exchangers/sinks, etc.

The development of quantum networking requires architectures capable of dynamically reconfigurable entanglement distribution to meet diverse user needs and ensure tolerance against transmission disruptions.

The invented alloys are a new family of Al-Mg alloys. This new family of Al-based alloys demonstrate an excellent ductility (10 ± 2 % elongation) despite the high content of impurities commonly observed in recycled aluminum.

The invention presented here addresses key challenges associated with counterfeit refrigerants by ensuring safety, maintaining system performance, supporting environmental compliance, and mitigating health and legal risks.

We have been working to adapt background oriented schlieren (BOS) imaging to directly visualize building leakage, which is fast and easy.

This invention aims to develop a new feature for a heat pump water heater having a forced flow condenser, coupled with a mixing valve, and a new feature to maximize the first hour rating and provide quick response to hot water demand, comparable to a typical gas water heater.&

Polarization drift in quantum networks is a major issue. Fiber transforms a transmitted signal’s polarization differently depending on its environment.