Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
- (-) Computing and Computational Sciences Directorate (35)
Researcher
- Ali Passian
- Amit Shyam
- Beth L Armstrong
- Peeyush Nandwana
- Hsuan-Hao Lu
- Joseph Lukens
- Nicholas Peters
- Alex Plotkowski
- Amit K Naskar
- Brian Post
- Jaswinder Sharma
- Joseph Chapman
- Jun Qu
- Muneer Alshowkan
- Rangasayee Kannan
- Srikanth Yoginath
- Sudarsanam Babu
- Yong Chae Lim
- Anees Alnajjar
- Blane Fillingim
- Chad Steed
- Corson Cramer
- Costas Tsouris
- Gs Jung
- Gyoung Gug Jang
- James A Haynes
- James J Nutaro
- Junghoon Chae
- Lauren Heinrich
- Logan Kearney
- Meghan Lamm
- Michael Toomey
- Nihal Kanbargi
- Pratishtha Shukla
- Radu Custelcean
- Ryan Dehoff
- Sergiy Kalnaus
- Steve Bullock
- Sudip Seal
- Sumit Bahl
- Thomas Feldhausen
- Tomas Grejtak
- Travis Humble
- Ying Yang
- Yousub Lee
- Aaron Werth
- Adam Siekmann
- Adam Stevens
- Alexander I Wiechert
- Alex Miloshevsky
- Alice Perrin
- Amy Moore
- Andres Marquez Rossy
- Arit Das
- Benjamin L Doughty
- Ben Lamm
- Brandon Miller
- Brian Williams
- Bruce A Pint
- Bryan Lim
- Christopher Bowland
- Christopher Fancher
- Christopher Ledford
- Claire Marvinney
- Craig A Bridges
- David J Mitchell
- Dean T Pierce
- Debangshu Mukherjee
- Edgar Lara-Curzio
- Emilio Piesciorovsky
- Ethan Self
- Felix L Paulauskas
- Frederic Vautard
- Gabriel Veith
- Gary Hahn
- Georgios Polyzos
- Gerry Knapp
- Glenn R Romanoski
- Gordon Robertson
- Govindarajan Muralidharan
- Harper Jordan
- Holly Humphrey
- James Klett
- Jay Reynolds
- Jeff Brookins
- Jiheon Jun
- Joel Asiamah
- Joel Dawson
- Jong K Keum
- Jordan Wright
- Jovid Rakhmonov
- Khryslyn G Araño
- Mariam Kiran
- Marm Dixit
- Matthew S Chambers
- Md Inzamam Ul Haque
- Michael Kirka
- Mina Yoon
- Nageswara Rao
- Nance Ericson
- Nancy Dudney
- Nicholas Richter
- Olga S Ovchinnikova
- Pablo Moriano Salazar
- Peter Wang
- Priyanshi Agrawal
- Ramanan Sankaran
- Raymond Borges Hink
- Robert E Norris Jr
- Roger G Miller
- Rose Montgomery
- Samudra Dasgupta
- Santanu Roy
- Sarah Graham
- Shajjad Chowdhury
- Sheng Dai
- Steven J Zinkle
- Sumit Gupta
- Sunyong Kwon
- Thomas R Muth
- Tim Graening Seibert
- Tolga Aytug
- Trevor Aguirre
- Uvinduni Premadasa
- Varisara Tansakul
- Venugopal K Varma
- Vera Bocharova
- Vimal Ramanuj
- Vivek Sujan
- Weicheng Zhong
- Wei Tang
- Wenjun Ge
- William Peter
- Xiang Chen
- Yanli Wang
- Yiyu Wang
- Yukinori Yamamoto
- Yutai Kato
- Zhili Feng

Efficient thermal management in polymers is essential for developing lightweight, high-strength materials with multifunctional capabilities.

The disclosure is directed to optimized fiber geometries for use in carbon fiber reinforced polymers with increased compressive strength per unit cost. The disclosed fiber geometries reduce the material processing costs as well as increase the compressive strength.

Here we present a solution for practically demonstrating path-aware routing and visualizing a self-driving network.

Technologies directed to polarization agnostic continuous variable quantum key distribution are described.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

Currently available cast Al alloys are not suitable for various high-performance conductor applications, such as rotor, inverter, windings, busbar, heat exchangers/sinks, etc.

The development of quantum networking requires architectures capable of dynamically reconfigurable entanglement distribution to meet diverse user needs and ensure tolerance against transmission disruptions.

The invented alloys are a new family of Al-Mg alloys. This new family of Al-based alloys demonstrate an excellent ductility (10 ± 2 % elongation) despite the high content of impurities commonly observed in recycled aluminum.

A novel and cost-effective process for the activation of carbon fibers was established.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

Polarization drift in quantum networks is a major issue. Fiber transforms a transmitted signal’s polarization differently depending on its environment.

Among the methods for point source carbon capture, the absorption of CO2 using aqueous amines (namely MEA) from the post-combustion gas stream is currently considered the most promising.