Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- (-) User Facilities (27)
Researcher
- Brian Post
- Ali Passian
- Peter Wang
- Rama K Vasudevan
- Ryan Dehoff
- Sergei V Kalinin
- Yongtao Liu
- Ahmed Hassen
- Andrzej Nycz
- Blane Fillingim
- Chris Masuo
- Joseph Chapman
- Kevin M Roccapriore
- Kyle Kelley
- Maxim A Ziatdinov
- Nicholas Peters
- Olga S Ovchinnikova
- Peeyush Nandwana
- Sudarsanam Babu
- Thomas Feldhausen
- Amit Shyam
- Hsuan-Hao Lu
- J.R. R Matheson
- Joseph Lukens
- Joshua Vaughan
- Kashif Nawaz
- Lauren Heinrich
- Michael Kirka
- Muneer Alshowkan
- Stephen Jesse
- Vincent Paquit
- Vlastimil Kunc
- Yousub Lee
- Adam Stevens
- Alex Plotkowski
- Alex Roschli
- Alice Perrin
- Amir K Ziabari
- An-Ping Li
- Andres Marquez Rossy
- Andrew Lupini
- Anees Alnajjar
- Anton Ievlev
- Arpan Biswas
- Bogdan Dryzhakov
- Brian Fricke
- Brian Gibson
- Brian Williams
- Cameron Adkins
- Christopher Fancher
- Christopher Ledford
- Christopher Rouleau
- Chris Tyler
- Claire Marvinney
- Clay Leach
- Costas Tsouris
- Craig Blue
- David Nuttall
- David Olvera Trejo
- Debangshu Mukherjee
- Gerd Duscher
- Gordon Robertson
- Gs Jung
- Gyoung Gug Jang
- Harper Jordan
- Hoyeon Jeon
- Huixin (anna) Jiang
- Ilia N Ivanov
- Isha Bhandari
- Ivan Vlassiouk
- James Haley
- Jamieson Brechtl
- Jay Reynolds
- Jeff Brookins
- Jesse Heineman
- Jewook Park
- Joel Asiamah
- Joel Dawson
- John Lindahl
- John Potter
- Jong K Keum
- Kai Li
- Kyle Gluesenkamp
- Liam Collins
- Liam White
- Luke Meyer
- Mahshid Ahmadi-Kalinina
- Mariam Kiran
- Marti Checa Nualart
- Md Inzamam Ul Haque
- Michael Borish
- Mina Yoon
- Nance Ericson
- Neus Domingo Marimon
- Nickolay Lavrik
- Ondrej Dyck
- Patxi Fernandez-Zelaia
- Philip Bingham
- Radu Custelcean
- Rangasayee Kannan
- Ritin Mathews
- Roger G Miller
- Saban Hus
- Sai Mani Prudhvi Valleti
- Sarah Graham
- Scott Smith
- Singanallur Venkatakrishnan
- Srikanth Yoginath
- Steven Guzorek
- Steven Randolph
- Sumner Harris
- Utkarsh Pratiush
- Varisara Tansakul
- Vipin Kumar
- William Carter
- William Peter
- Xiaobing Liu
- Yan-Ru Lin
- Ying Yang
- Yukinori Yamamoto
- Zhiming Gao

Dual-GP addresses limitations in traditional GPBO-driven autonomous experimentation by incorporating an additional surrogate observer and allowing human oversight, this technique improves optimization efficiency via data quality assessment and adaptability to unanticipated exp

Here we present a solution for practically demonstrating path-aware routing and visualizing a self-driving network.

Technologies directed to polarization agnostic continuous variable quantum key distribution are described.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

The development of quantum networking requires architectures capable of dynamically reconfigurable entanglement distribution to meet diverse user needs and ensure tolerance against transmission disruptions.

This manufacturing method uses multifunctional materials distributed volumetrically to generate a stiffness-based architecture, where continuous surfaces can be created from flat, rapidly produced geometries.

Polarization drift in quantum networks is a major issue. Fiber transforms a transmitted signal’s polarization differently depending on its environment.

The lack of real-time insights into how materials evolve during laser powder bed fusion has limited the adoption by inhibiting part qualification. The developed approach provides key data needed to fabricate born qualified parts.

This invention addresses a key challenge in quantum communication networks by developing a controlled-NOT (CNOT) gate that operates between two degrees of freedom (DoFs) within a single photon: polarization and frequency.