Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- (-) User Facilities (27)
Researcher
- Ryan Dehoff
- Rama K Vasudevan
- Sergei V Kalinin
- Yongtao Liu
- Joseph Chapman
- Kevin M Roccapriore
- Kyle Kelley
- Maxim A Ziatdinov
- Nicholas Peters
- Olga S Ovchinnikova
- Singanallur Venkatakrishnan
- Vincent Paquit
- Amir K Ziabari
- Hsuan-Hao Lu
- Joseph Lukens
- Kashif Nawaz
- Michael Kirka
- Muneer Alshowkan
- Philip Bingham
- Stephen Jesse
- Adam Stevens
- Ahmed Hassen
- Alex Plotkowski
- Alice Perrin
- Amit Shyam
- An-Ping Li
- Andres Marquez Rossy
- Andrew Lupini
- Anees Alnajjar
- Anton Ievlev
- Arpan Biswas
- Blane Fillingim
- Bogdan Dryzhakov
- Brian Fricke
- Brian Post
- Brian Williams
- Christopher Ledford
- Christopher Rouleau
- Clay Leach
- Costas Tsouris
- David Nuttall
- Debangshu Mukherjee
- Diana E Hun
- Gerd Duscher
- Gina Accawi
- Gs Jung
- Gurneesh Jatana
- Gyoung Gug Jang
- Hoyeon Jeon
- Huixin (anna) Jiang
- Ilia N Ivanov
- Ivan Vlassiouk
- James Haley
- Jamieson Brechtl
- Jewook Park
- Jong K Keum
- Kai Li
- Kyle Gluesenkamp
- Liam Collins
- Mahshid Ahmadi-Kalinina
- Mariam Kiran
- Mark M Root
- Marti Checa Nualart
- Md Inzamam Ul Haque
- Mina Yoon
- Neus Domingo Marimon
- Nickolay Lavrik
- Obaid Rahman
- Ondrej Dyck
- Patxi Fernandez-Zelaia
- Peeyush Nandwana
- Philip Boudreaux
- Radu Custelcean
- Rangasayee Kannan
- Roger G Miller
- Saban Hus
- Sai Mani Prudhvi Valleti
- Sarah Graham
- Steven Randolph
- Sudarsanam Babu
- Sumner Harris
- Utkarsh Pratiush
- Vipin Kumar
- Vlastimil Kunc
- William Peter
- Xiaobing Liu
- Yan-Ru Lin
- Ying Yang
- Yukinori Yamamoto
- Zhiming Gao

ORNL researchers have developed a deep learning-based approach to rapidly perform high-quality reconstructions from sparse X-ray computed tomography measurements.

Dual-GP addresses limitations in traditional GPBO-driven autonomous experimentation by incorporating an additional surrogate observer and allowing human oversight, this technique improves optimization efficiency via data quality assessment and adaptability to unanticipated exp

Here we present a solution for practically demonstrating path-aware routing and visualizing a self-driving network.

Technologies directed to polarization agnostic continuous variable quantum key distribution are described.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

The development of quantum networking requires architectures capable of dynamically reconfigurable entanglement distribution to meet diverse user needs and ensure tolerance against transmission disruptions.

We have been working to adapt background oriented schlieren (BOS) imaging to directly visualize building leakage, which is fast and easy.

Polarization drift in quantum networks is a major issue. Fiber transforms a transmitted signal’s polarization differently depending on its environment.

This invention addresses a key challenge in quantum communication networks by developing a controlled-NOT (CNOT) gate that operates between two degrees of freedom (DoFs) within a single photon: polarization and frequency.

The invention introduces a novel, customizable method to create, manipulate, and erase polar topological structures in ferroelectric materials using atomic force microscopy.

High coercive fields prevalent in wurtzite ferroelectrics present a significant challenge, as they hinder efficient polarization switching, which is essential for microelectronic applications.