Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- (-) User Facilities (27)
Researcher
- Radu Custelcean
- Ali Passian
- Rama K Vasudevan
- Ryan Dehoff
- Costas Tsouris
- Sergei V Kalinin
- Yongtao Liu
- Gyoung Gug Jang
- Jeffrey Einkauf
- Joseph Chapman
- Kevin M Roccapriore
- Kyle Kelley
- Maxim A Ziatdinov
- Nicholas Peters
- Olga S Ovchinnikova
- Benjamin L Doughty
- Bruce Moyer
- Gs Jung
- Hsuan-Hao Lu
- Joseph Lukens
- Kashif Nawaz
- Michael Kirka
- Muneer Alshowkan
- Nikki Thiele
- Santa Jansone-Popova
- Stephen Jesse
- Vincent Paquit
- Adam Stevens
- Ahmed Hassen
- Alexander I Wiechert
- Alex Plotkowski
- Alice Perrin
- Amir K Ziabari
- Amit Shyam
- An-Ping Li
- Andres Marquez Rossy
- Andrew Lupini
- Anees Alnajjar
- Anton Ievlev
- Arpan Biswas
- Blane Fillingim
- Bogdan Dryzhakov
- Brian Fricke
- Brian Post
- Brian Williams
- Christopher Ledford
- Christopher Rouleau
- Claire Marvinney
- Clay Leach
- David Nuttall
- Debangshu Mukherjee
- Gerd Duscher
- Harper Jordan
- Hoyeon Jeon
- Huixin (anna) Jiang
- Ilia N Ivanov
- Ilja Popovs
- Ivan Vlassiouk
- James Haley
- Jamieson Brechtl
- Jayanthi Kumar
- Jennifer M Pyles
- Jewook Park
- Joel Asiamah
- Joel Dawson
- Jong K Keum
- Kai Li
- Kyle Gluesenkamp
- Laetitia H Delmau
- Liam Collins
- Luke Sadergaski
- Mahshid Ahmadi-Kalinina
- Mariam Kiran
- Marti Checa Nualart
- Md Faizul Islam
- Md Inzamam Ul Haque
- Mina Yoon
- Nance Ericson
- Neus Domingo Marimon
- Nickolay Lavrik
- Ondrej Dyck
- Parans Paranthaman
- Patxi Fernandez-Zelaia
- Peeyush Nandwana
- Philip Bingham
- Rangasayee Kannan
- Roger G Miller
- Saban Hus
- Sai Mani Prudhvi Valleti
- Santanu Roy
- Sarah Graham
- Saurabh Prakash Pethe
- Singanallur Venkatakrishnan
- Srikanth Yoginath
- Steven Randolph
- Subhamay Pramanik
- Sudarsanam Babu
- Sumner Harris
- Utkarsh Pratiush
- Uvinduni Premadasa
- Varisara Tansakul
- Vera Bocharova
- Vipin Kumar
- Vlastimil Kunc
- William Peter
- Xiaobing Liu
- Yan-Ru Lin
- Ying Yang
- Yingzhong Ma
- Yukinori Yamamoto
- Zhiming Gao

Dual-GP addresses limitations in traditional GPBO-driven autonomous experimentation by incorporating an additional surrogate observer and allowing human oversight, this technique improves optimization efficiency via data quality assessment and adaptability to unanticipated exp

Here we present a solution for practically demonstrating path-aware routing and visualizing a self-driving network.

Technologies directed to polarization agnostic continuous variable quantum key distribution are described.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

The technologies provides for regeneration of anion-exchange resin.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

Ruthenium is recovered from used nuclear fuel in an oxidizing environment by depositing the volatile RuO4 species onto a polymeric substrate.

The development of quantum networking requires architectures capable of dynamically reconfigurable entanglement distribution to meet diverse user needs and ensure tolerance against transmission disruptions.

This invention describes a new class of amphiphilic chelators (extractants) that can selectively separate large, light rare earth elements from heavy, small rare earth elements in solvent extraction schemes.

Polarization drift in quantum networks is a major issue. Fiber transforms a transmitted signal’s polarization differently depending on its environment.

Among the methods for point source carbon capture, the absorption of CO2 using aqueous amines (namely MEA) from the post-combustion gas stream is currently considered the most promising.

This invention addresses a key challenge in quantum communication networks by developing a controlled-NOT (CNOT) gate that operates between two degrees of freedom (DoFs) within a single photon: polarization and frequency.