Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
- (-) Information Technology Services Directorate (2)
Researcher
- Ryan Dehoff
- Michael Kirka
- Rob Moore II
- Vincent Paquit
- Adam Stevens
- Ahmed Hassen
- Alex Plotkowski
- Alice Perrin
- Amir K Ziabari
- Amit Shyam
- Andres Marquez Rossy
- Blane Fillingim
- Brian Post
- Christopher Ledford
- Clay Leach
- David Nuttall
- James Haley
- Jason Jarnagin
- Kevin Spakes
- Lilian V Swann
- Mark Provo II
- Matthew Brahlek
- Patxi Fernandez-Zelaia
- Peeyush Nandwana
- Philip Bingham
- Rangasayee Kannan
- Rob Root
- Roger G Miller
- Sam Hollifield
- Sarah Graham
- Singanallur Venkatakrishnan
- Sudarsanam Babu
- Vipin Kumar
- Vlastimil Kunc
- William Peter
- Yan-Ru Lin
- Ying Yang
- Yukinori Yamamoto

The ever-changing cellular communication landscape makes it difficult to identify, map, and localize commercial and private cellular base stations (PCBS).

High strength, oxidation resistant refractory alloys are difficult to fabricate for commercial use in extreme environments.

Molecular Beam Epitaxy is a traditional technique for the synthesis of thin film materials used in the semiconducting and microelectronics industry. In its essence, the MBE technique heats crucibles filled with ultra-pure atomic elements under ultra high vacuum condition

In manufacturing parts for industry using traditional molds and dies, about 70 percent to 80 percent of the time it takes to create a part is a result of a relatively slow cooling process.

This technology combines 3D printing and compression molding to produce high-strength, low-porosity composite articles.

Simurgh revolutionizes industrial CT imaging with AI, enhancing speed and accuracy in nondestructive testing for complex parts, reducing costs.

An innovative low-cost system for in-situ monitoring of strain and temperature during directed energy deposition.