Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Ryan Dehoff
- Michael Kirka
- Rob Moore II
- Vincent Paquit
- Adam Stevens
- Ahmed Hassen
- Alexander I Wiechert
- Alex Plotkowski
- Alice Perrin
- Amir K Ziabari
- Amit Shyam
- Andres Marquez Rossy
- Benjamin Manard
- Blane Fillingim
- Brian Post
- Charles F Weber
- Christopher Ledford
- Clay Leach
- Costas Tsouris
- David Nuttall
- Derek Dwyer
- James Haley
- Joanna Mcfarlane
- Jonathan Willocks
- Louise G Evans
- Matthew Brahlek
- Matt Vick
- Mengdawn Cheng
- Patxi Fernandez-Zelaia
- Paula Cable-Dunlap
- Peeyush Nandwana
- Philip Bingham
- Rangasayee Kannan
- Richard L. Reed
- Roger G Miller
- Sarah Graham
- Singanallur Venkatakrishnan
- Sudarsanam Babu
- Vandana Rallabandi
- Vipin Kumar
- Vlastimil Kunc
- William Peter
- Yan-Ru Lin
- Ying Yang
- Yukinori Yamamoto

High-gradient magnetic filtration (HGMF) is a non-destructive separation technique that captures magnetic constituents from a matrix containing other non-magnetic species. One characteristic that actinide metals share across much of the group is that they are magnetic.

Pyrolysis evolved gas analysis – mass spectrometry (EGA-MS) and pyrolysis gas chromatography – MS (GC-MS) – are powerful analytical tools for polymer characterization.

High strength, oxidation resistant refractory alloys are difficult to fabricate for commercial use in extreme environments.

We have developed an aerosol sampling technique to enable collection of trace materials such as actinides in the atmosphere.

Molecular Beam Epitaxy is a traditional technique for the synthesis of thin film materials used in the semiconducting and microelectronics industry. In its essence, the MBE technique heats crucibles filled with ultra-pure atomic elements under ultra high vacuum condition

In manufacturing parts for industry using traditional molds and dies, about 70 percent to 80 percent of the time it takes to create a part is a result of a relatively slow cooling process.

This technology combines 3D printing and compression molding to produce high-strength, low-porosity composite articles.