Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Brian Post
- Peter Wang
- Ryan Dehoff
- Ahmed Hassen
- Andrzej Nycz
- Blane Fillingim
- Chris Masuo
- Peeyush Nandwana
- Sudarsanam Babu
- Thomas Feldhausen
- Amit Shyam
- J.R. R Matheson
- Joshua Vaughan
- Lauren Heinrich
- Michael Kirka
- Vincent Paquit
- Vlastimil Kunc
- Yousub Lee
- Adam Stevens
- Alex Plotkowski
- Alex Roschli
- Alice Perrin
- Amir K Ziabari
- Andres Marquez Rossy
- Brian Gibson
- Cameron Adkins
- Christopher Fancher
- Christopher Ledford
- Chris Tyler
- Clay Leach
- Craig Blue
- David Nuttall
- David Olvera Trejo
- Gordon Robertson
- Isha Bhandari
- James Haley
- Jay Reynolds
- Jeff Brookins
- Jesse Heineman
- John Lindahl
- John Potter
- Liam White
- Luke Meyer
- Michael Borish
- Patxi Fernandez-Zelaia
- Philip Bingham
- Rangasayee Kannan
- Ritin Mathews
- Roger G Miller
- Sarah Graham
- Scott Smith
- Singanallur Venkatakrishnan
- Steven Guzorek
- Vipin Kumar
- William Carter
- William Peter
- Yan-Ru Lin
- Ying Yang
- Yukinori Yamamoto

Complex protective casings and housings are necessary for many applications, including combustion chambers of gas turbines used in aerospace engines. Manufacturing these components from forging and/or casting as a whole is challenging, costly, and time-consuming.

In wire-arc additive manufacturing and hot-wire laser additive manufacturing, wire is fed into a melt pool and melted through the arc or laser process.

In manufacturing parts for industry using traditional molds and dies, about 70 percent to 80 percent of the time it takes to create a part is a result of a relatively slow cooling process.

This technology combines 3D printing and compression molding to produce high-strength, low-porosity composite articles.

Simurgh revolutionizes industrial CT imaging with AI, enhancing speed and accuracy in nondestructive testing for complex parts, reducing costs.

An innovative low-cost system for in-situ monitoring of strain and temperature during directed energy deposition.

A high-strength, heat-resistant Al-Ce-Ni alloy optimized for additive manufacturing in industrial applications.

An innovative rapid manufacturing method for tailored fiber preforms with controlled fiber alignment for enhanced mechanical properties.