Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Brian Post
- Peter Wang
- Ryan Dehoff
- Ahmed Hassen
- Andrzej Nycz
- Blane Fillingim
- Chris Masuo
- Joseph Chapman
- Nicholas Peters
- Peeyush Nandwana
- Sudarsanam Babu
- Thomas Feldhausen
- Amit Shyam
- Hsuan-Hao Lu
- J.R. R Matheson
- Joseph Lukens
- Joshua Vaughan
- Lauren Heinrich
- Michael Kirka
- Muneer Alshowkan
- Vincent Paquit
- Vlastimil Kunc
- Yousub Lee
- Adam Stevens
- Alex Plotkowski
- Alex Roschli
- Alice Perrin
- Amir K Ziabari
- Andres Marquez Rossy
- Anees Alnajjar
- Brian Gibson
- Brian Williams
- Cameron Adkins
- Christopher Fancher
- Christopher Ledford
- Chris Tyler
- Clay Leach
- Craig Blue
- David Nuttall
- David Olvera Trejo
- Gordon Robertson
- Isha Bhandari
- James Haley
- Jay Reynolds
- Jeff Brookins
- Jesse Heineman
- John Lindahl
- John Potter
- Liam White
- Luke Meyer
- Mariam Kiran
- Michael Borish
- Patxi Fernandez-Zelaia
- Philip Bingham
- Rangasayee Kannan
- Ritin Mathews
- Roger G Miller
- Sarah Graham
- Scott Smith
- Singanallur Venkatakrishnan
- Steven Guzorek
- Vipin Kumar
- William Carter
- William Peter
- Yan-Ru Lin
- Ying Yang
- Yukinori Yamamoto

Here we present a solution for practically demonstrating path-aware routing and visualizing a self-driving network.

Technologies directed to polarization agnostic continuous variable quantum key distribution are described.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

The development of quantum networking requires architectures capable of dynamically reconfigurable entanglement distribution to meet diverse user needs and ensure tolerance against transmission disruptions.

This manufacturing method uses multifunctional materials distributed volumetrically to generate a stiffness-based architecture, where continuous surfaces can be created from flat, rapidly produced geometries.

Polarization drift in quantum networks is a major issue. Fiber transforms a transmitted signal’s polarization differently depending on its environment.

The lack of real-time insights into how materials evolve during laser powder bed fusion has limited the adoption by inhibiting part qualification. The developed approach provides key data needed to fabricate born qualified parts.

This invention addresses a key challenge in quantum communication networks by developing a controlled-NOT (CNOT) gate that operates between two degrees of freedom (DoFs) within a single photon: polarization and frequency.

Polarization drift in quantum networks is a major issue. Fiber transforms a transmitted signal’s polarization differently depending on its environment.

A valve solution that prevents cross contamination while allowing for blocking multiple channels at once using only one actuator.

Materials produced via additive manufacturing, or 3D printing, can experience significant residual stress, distortion and cracking, negatively impacting the manufacturing process.