Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Ryan Dehoff
- Joseph Chapman
- Nicholas Peters
- Brian Post
- Hsuan-Hao Lu
- Joseph Lukens
- Michael Kirka
- Muneer Alshowkan
- Singanallur Venkatakrishnan
- Vincent Paquit
- Adam Stevens
- Ahmed Hassen
- Alex Plotkowski
- Alex Roschli
- Alice Perrin
- Amir K Ziabari
- Amit Shyam
- Andres Marquez Rossy
- Anees Alnajjar
- Blane Fillingim
- Brian Williams
- Cameron Adkins
- Christopher Ledford
- Clay Leach
- David Nuttall
- Diana E Hun
- Gina Accawi
- Gurneesh Jatana
- Isha Bhandari
- James Haley
- Liam White
- Mariam Kiran
- Mark M Root
- Michael Borish
- Patxi Fernandez-Zelaia
- Peeyush Nandwana
- Philip Bingham
- Philip Boudreaux
- Rangasayee Kannan
- Roger G Miller
- Sarah Graham
- Sudarsanam Babu
- Vipin Kumar
- Vlastimil Kunc
- William Peter
- Yan-Ru Lin
- Ying Yang
- Yukinori Yamamoto

Here we present a solution for practically demonstrating path-aware routing and visualizing a self-driving network.

Technologies directed to polarization agnostic continuous variable quantum key distribution are described.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

The development of quantum networking requires architectures capable of dynamically reconfigurable entanglement distribution to meet diverse user needs and ensure tolerance against transmission disruptions.

We have been working to adapt background oriented schlieren (BOS) imaging to directly visualize building leakage, which is fast and easy.

Polarization drift in quantum networks is a major issue. Fiber transforms a transmitted signal’s polarization differently depending on its environment.

This invention addresses a key challenge in quantum communication networks by developing a controlled-NOT (CNOT) gate that operates between two degrees of freedom (DoFs) within a single photon: polarization and frequency.

Polarization drift in quantum networks is a major issue. Fiber transforms a transmitted signal’s polarization differently depending on its environment.

High strength, oxidation resistant refractory alloys are difficult to fabricate for commercial use in extreme environments.

A quantum communication system enabling two-mode squeezing distribution over standard fiber optic networks for enhanced data security.