Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate
(21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Ali Passian
- Ryan Dehoff
- Joseph Chapman
- Nicholas Peters
- Hongbin Sun
- Hsuan-Hao Lu
- Joseph Lukens
- Michael Kirka
- Muneer Alshowkan
- Prashant Jain
- Vincent Paquit
- Adam Stevens
- Ahmed Hassen
- Alex Plotkowski
- Alice Perrin
- Amir K Ziabari
- Amit Shyam
- Andres Marquez Rossy
- Anees Alnajjar
- Blane Fillingim
- Brian Post
- Brian Williams
- Christopher Ledford
- Claire Marvinney
- Clay Leach
- David Nuttall
- Harper Jordan
- Ian Greenquist
- Ilias Belharouak
- James Haley
- Joel Asiamah
- Joel Dawson
- Mariam Kiran
- Nance Ericson
- Nate See
- Nithin Panicker
- Patxi Fernandez-Zelaia
- Peeyush Nandwana
- Philip Bingham
- Pradeep Ramuhalli
- Praveen Cheekatamarla
- Rangasayee Kannan
- Roger G Miller
- Ruhul Amin
- Sarah Graham
- Singanallur Venkatakrishnan
- Srikanth Yoginath
- Sudarsanam Babu
- Varisara Tansakul
- Vipin Kumar
- Vishaldeep Sharma
- Vittorio Badalassi
- Vlastimil Kunc
- William Peter
- Yan-Ru Lin
- Ying Yang
- Yukinori Yamamoto

Here we present a solution for practically demonstrating path-aware routing and visualizing a self-driving network.

Technologies directed to polarization agnostic continuous variable quantum key distribution are described.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

The development of quantum networking requires architectures capable of dynamically reconfigurable entanglement distribution to meet diverse user needs and ensure tolerance against transmission disruptions.

The invention presented here addresses key challenges associated with counterfeit refrigerants by ensuring safety, maintaining system performance, supporting environmental compliance, and mitigating health and legal risks.

Polarization drift in quantum networks is a major issue. Fiber transforms a transmitted signal’s polarization differently depending on its environment.

This invention addresses a key challenge in quantum communication networks by developing a controlled-NOT (CNOT) gate that operates between two degrees of freedom (DoFs) within a single photon: polarization and frequency.

Polarization drift in quantum networks is a major issue. Fiber transforms a transmitted signal’s polarization differently depending on its environment.