Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate (229)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (138)
- User Facilities (28)
Researcher
- Andrzej Nycz
- Ryan Dehoff
- Chris Masuo
- Vincent Paquit
- Peter Wang
- Alex Walters
- Brian Post
- Michael Kirka
- Peeyush Nandwana
- Rangasayee Kannan
- Venkatakrishnan Singanallur Vaidyanathan
- Adam Stevens
- Alex Roschli
- Amir K Ziabari
- Amit Shyam
- Brian Gibson
- Clay Leach
- Joshua Vaughan
- Luke Meyer
- Philip Bingham
- Udaya C Kalluri
- William Carter
- Ahmed Hassen
- Akash Jag Prasad
- Alex Plotkowski
- Alice Perrin
- Andres Marquez Rossy
- Blane Fillingim
- Calen Kimmell
- Cameron Adkins
- Canhai Lai
- Chelo Chavez
- Christopher Fancher
- Christopher Ledford
- Chris Tyler
- Costas Tsouris
- David Nuttall
- Diana E Hun
- Erin Webb
- Evin Carter
- Gina Accawi
- Gordon Robertson
- Gurneesh Jatana
- Isha Bhandari
- J.R. R Matheson
- James Haley
- James Parks II
- Jaydeep Karandikar
- Jay Reynolds
- Jeff Brookins
- Jeremy Malmstead
- Jesse Heineman
- John Potter
- Kitty K Mccracken
- Liam White
- Mark M Root
- Michael Borish
- Obaid Rahman
- Oluwafemi Oyedeji
- Patxi Fernandez-Zelaia
- Philip Boudreaux
- Riley Wallace
- Ritin Mathews
- Roger G Miller
- Sarah Graham
- Soydan Ozcan
- Sudarsanam Babu
- Tyler Smith
- Vipin Kumar
- Vladimir Orlyanchik
- Vlastimil Kunc
- William Peter
- Xianhui Zhao
- Xiaohan Yang
- Yan-Ru Lin
- Ying Yang
- Yukinori Yamamoto
- Zackary Snow

In additive printing that utilizes multiple robotic agents to build, each agent, or “arm”, is currently limited to a prescribed path determined by the user.

This invention discusses the methodology to calibrating a multi-robot system with an arbitrary number of agents to obtain single coordinate frame with high accuracy.

High strength, oxidation resistant refractory alloys are difficult to fabricate for commercial use in extreme environments.

Gas metal arc welding (GMAW) wire arc additive manufacturing (WAAM) processes use inert shielding to protect the weld arc during material deposition, but do not protect the trailing bead, which can lead to weld issues varying from low finish quality to diminished material prop

Technologies are described directed to reducing weld additive part distortion with spot compressions integrated into the build process. The disclosed technologies can be used to make weld additive parts with potentially better geometrical accuracy.