Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (26)
- Computing and Computational Sciences Directorate (38)
- Energy Science and Technology Directorate (223)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- National Security Sciences Directorate
(20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (135)
- User Facilities (27)
- (-) Isotope Science and Enrichment Directorate (7)
Researcher
- Ryan Dehoff
- Michael Kirka
- Mike Zach
- Vincent Paquit
- Adam Stevens
- Ahmed Hassen
- Alexandre Sorokine
- Alex Plotkowski
- Alice Perrin
- Amir K Ziabari
- Amit Shyam
- Andres Marquez Rossy
- Andrew F May
- Annetta Burger
- Ben Garrison
- Blane Fillingim
- Brad Johnson
- Brian Post
- Bruce Moyer
- Carter Christopher
- Chance C Brown
- Charlie Cook
- Christopher Hershey
- Christopher Ledford
- Clay Leach
- Clinton Stipek
- Craig Blue
- Daniel Adams
- Daniel Rasmussen
- David Nuttall
- Debjani Pal
- Debraj De
- Gautam Malviya Thakur
- Hsin Wang
- James Gaboardi
- James Haley
- James Klett
- Jeffrey Einkauf
- Jennifer M Pyles
- Jesse McGaha
- Jessica Moehl
- John Lindahl
- Justin Griswold
- Kevin Sparks
- Kuntal De
- Laetitia H Delmau
- Liz McBride
- Luke Sadergaski
- Nedim Cinbiz
- Padhraic L Mulligan
- Patxi Fernandez-Zelaia
- Peeyush Nandwana
- Philip Bingham
- Philipe Ambrozio Dias
- Rangasayee Kannan
- Roger G Miller
- Sandra Davern
- Sarah Graham
- Sudarsanam Babu
- Taylor Hauser
- Todd Thomas
- Tony Beard
- Venkatakrishnan Singanallur Vaidyanathan
- Vipin Kumar
- Viswadeep Lebakula
- Vlastimil Kunc
- William Peter
- Xiuling Nie
- Yan-Ru Lin
- Ying Yang
- Yukinori Yamamoto

Often there are major challenges in developing diverse and complex human mobility metrics systematically and quickly.

Understanding building height is imperative to the overall study of energy efficiency, population distribution, urban morphologies, emergency response, among others. Currently, existing approaches for modelling building height at scale are hindered by two pervasive issues.

Ruthenium is recovered from used nuclear fuel in an oxidizing environment by depositing the volatile RuO4 species onto a polymeric substrate.

The technologies provide a system and method of needling of veiled AS4 fabric tape.

High strength, oxidation resistant refractory alloys are difficult to fabricate for commercial use in extreme environments.

Spherical powders applied to nuclear targetry for isotope production will allow for enhanced heat transfer properties, tailored thermal conductivity and minimize time required for target fabrication and post processing.

ORNL will develop an advanced high-performing RTG using a novel radioisotope heat source.

In manufacturing parts for industry using traditional molds and dies, about 70 percent to 80 percent of the time it takes to create a part is a result of a relatively slow cooling process.

Biocompatible nanoparticles have been developed that can trap and retain therapeutic radionuclides and their byproducts at the cancer site. This is important to maximize the therapeutic effect of this treatment and minimize associated side effects.