Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Ilias Belharouak
- Ryan Dehoff
- Benjamin Manard
- Alexey Serov
- Ali Abouimrane
- Cyril Thompson
- Jaswinder Sharma
- Jonathan Willocks
- Marm Dixit
- Michael Kirka
- Ruhul Amin
- Vincent Paquit
- Xiang Lyu
- Adam Stevens
- Ahmed Hassen
- Alexander I Wiechert
- Alex Plotkowski
- Alice Perrin
- Amir K Ziabari
- Amit K Naskar
- Amit Shyam
- Andres Marquez Rossy
- Ben LaRiviere
- Beth L Armstrong
- Blane Fillingim
- Brian Post
- Charles F Weber
- Christopher Ledford
- Clay Leach
- Costas Tsouris
- David L Wood III
- David Nuttall
- Gabriel Veith
- Georgios Polyzos
- Holly Humphrey
- Hongbin Sun
- James Haley
- James Szybist
- Joanna Mcfarlane
- Junbin Choi
- Khryslyn G Araño
- Logan Kearney
- Lu Yu
- Matt Vick
- Meghan Lamm
- Michael Toomey
- Michelle Lehmann
- Nance Ericson
- Nihal Kanbargi
- Patxi Fernandez-Zelaia
- Paul Groth
- Peeyush Nandwana
- Philip Bingham
- Pradeep Ramuhalli
- Rangasayee Kannan
- Ritu Sahore
- Roger G Miller
- Sarah Graham
- Singanallur Venkatakrishnan
- Sudarsanam Babu
- Todd Toops
- Vandana Rallabandi
- Vipin Kumar
- Vlastimil Kunc
- William Peter
- Yan-Ru Lin
- Yaocai Bai
- Ying Yang
- Yukinori Yamamoto
- Zhijia Du

High-gradient magnetic filtration (HGMF) is a non-destructive separation technique that captures magnetic constituents from a matrix containing other non-magnetic species. One characteristic that actinide metals share across much of the group is that they are magnetic.

An electrochemical cell has been specifically designed to maximize CO2 release from the seawater while also not changing the pH of the seawater before returning to the sea.

The ORNL invention addresses the challenge of poor mechanical properties of dry processed electrodes, improves their electrical properties, while improving their electrochemical performance.

Hydrogen is in great demand, but production relies heavily on hydrocarbons utilization. This process contributes greenhouse gases release into the atmosphere.

High strength, oxidation resistant refractory alloys are difficult to fabricate for commercial use in extreme environments.

ORNL has developed a new hybrid membrane to improve electrochemical stability in next-generation sodium metal anodes.