Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities
(27)
Researcher
- Ryan Dehoff
- Alex Plotkowski
- Amit Shyam
- Kyle Kelley
- Rama K Vasudevan
- Alice Perrin
- James A Haynes
- Michael Kirka
- Sergei V Kalinin
- Stephen Jesse
- Sumit Bahl
- Vincent Paquit
- Ying Yang
- Adam Stevens
- Ahmed Hassen
- Amir K Ziabari
- An-Ping Li
- Andres Marquez Rossy
- Andrew Lupini
- Anton Ievlev
- Blane Fillingim
- Bogdan Dryzhakov
- Brian Post
- Christopher Ledford
- Clay Leach
- David Nuttall
- Gerry Knapp
- Hoyeon Jeon
- Huixin (anna) Jiang
- James Haley
- Jamieson Brechtl
- Jewook Park
- Jovid Rakhmonov
- Kai Li
- Kashif Nawaz
- Kevin M Roccapriore
- Liam Collins
- Marti Checa Nualart
- Maxim A Ziatdinov
- Neus Domingo Marimon
- Nicholas Richter
- Olga S Ovchinnikova
- Ondrej Dyck
- Patxi Fernandez-Zelaia
- Peeyush Nandwana
- Philip Bingham
- Rangasayee Kannan
- Roger G Miller
- Saban Hus
- Sarah Graham
- Singanallur Venkatakrishnan
- Steven Randolph
- Sudarsanam Babu
- Sunyong Kwon
- Vipin Kumar
- Vlastimil Kunc
- William Peter
- Yan-Ru Lin
- Yongtao Liu
- Yukinori Yamamoto

Currently available cast Al alloys are not suitable for various high-performance conductor applications, such as rotor, inverter, windings, busbar, heat exchangers/sinks, etc.

The invented alloys are a new family of Al-Mg alloys. This new family of Al-based alloys demonstrate an excellent ductility (10 ± 2 % elongation) despite the high content of impurities commonly observed in recycled aluminum.

The invention introduces a novel, customizable method to create, manipulate, and erase polar topological structures in ferroelectric materials using atomic force microscopy.

High coercive fields prevalent in wurtzite ferroelectrics present a significant challenge, as they hinder efficient polarization switching, which is essential for microelectronic applications.

Distortion in scanning tunneling microscope (STM) images is an unavoidable problem. This technology is an algorithm to identify and correct distorted wavefronts in atomic resolution STM images.

High strength, oxidation resistant refractory alloys are difficult to fabricate for commercial use in extreme environments.

Moisture management accounts for over 40% of the energy used by buildings. As such development of energy efficient and resilient dehumidification technologies are critical to decarbonize the building energy sector.

In manufacturing parts for industry using traditional molds and dies, about 70 percent to 80 percent of the time it takes to create a part is a result of a relatively slow cooling process.

This technology provides a device, platform and method of fabrication of new atomically tailored materials. This “synthescope” is a scanning transmission electron microscope (STEM) transformed into an atomic-scale material manipulation platform.